Modeling, analysis, and optimal control of a class of hybrid systems

被引:52
作者
Pepyne, DL [1 ]
Cassandras, CG
机构
[1] Univ Massachusetts, Dept Elect & Comp Engn, Amherst, MA 01003 USA
[2] Boston Univ, Dept Mfg Engn, Boston, MA 02215 USA
来源
DISCRETE EVENT DYNAMIC SYSTEMS-THEORY AND APPLICATIONS | 1998年 / 8卷 / 02期
关键词
hybrid systems; optimal control; calculus of variations; manufacturing systems; queueing systems; nonsmooth optimization; two point boundary value problems;
D O I
10.1023/A:1008237701804
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a modeling framework for a class of hybrid systems which arise in many manufacturing environments and study related optimal control problems. In this framework, discrete entities have a state characterized by a temporal component whose evolution is described by event-driven dynamics, and a physical component whose evolution is described by time-driven dynamics. As a first step towards developing an optimal control theory for such hybrid systems, we formulate a problem consisting of a single-stage manufacturing process and use calculus of variations techniques to obtain structural properties and an explicit algorithm for deriving optimal policies.
引用
收藏
页码:175 / 201
页数:27
相关论文
共 17 条
[1]  
ANTSAKLIS PJ, 1995, LECT NOTES COMPUTER, V999
[2]  
Baccelli F, 1992, SYNCHRONIZATION LINE
[3]  
Bryson A. E., 1975, APPL OPTIMAL CONTROL
[4]  
CASSANDRAS CG, 1995, TRENDS IN CONTROL, P217
[5]  
CASSANDRAS CG, 1997, P 36 IEEE C DEC CONT
[6]  
Clarke F.H., 1989, Methods of dynamic and nonsmooth optimization
[7]  
Clarke FH, 1983, OPTIMIZATION NONSMOO
[8]  
Costa OLV, 1996, IEEE DECIS CONTR P, P1763, DOI 10.1109/CDC.1996.572818
[9]  
Deshpande A, 1996, IEEE DECIS CONTR P, P1196, DOI 10.1109/CDC.1996.572649
[10]  
Filar JA, 1996, IEEE DECIS CONTR P, P511, DOI 10.1109/CDC.1996.574367