Pore size engineering in mesoporous silicas using supercritical CO2

被引:31
作者
Hanrahan, JP
Copley, MP
Ziegler, KJ
Spalding, TR
Morris, MA
Steytler, DC
Heenan, RK
Schweins, R
Holmes, JD [1 ]
机构
[1] Natl Univ Ireland Univ Coll Cork, Dept Chem, Mat Sect, Cork, Ireland
[2] Natl Univ Ireland Univ Coll Cork, Supercrit Fluid Ctr, Cork, Ireland
[3] Univ E Anglia, Sch Chem Sci & Pharm, Norwich NR4 7TJ, Norfolk, England
[4] Rutherford Appleton Lab, ISIS, CLRC, Didcot OX11 0QX, Oxon, England
[5] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France
关键词
D O I
10.1021/la0470636
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper we investigate the use of supercritical carbon dioxide (SC-CO2) for synthesizing calcined mesoporous silicas with tunable pore sizes, wall thickness, and d spacings. Small angle neutron scattering was used to probe the controlled swelling of the triblock copolymer surfactant templating agents, P123 (PEO20PPO69PEO20), P85 (PEO26PPO39PEO26), and F127 (PEO106PPO70PEO106), as a function of CO2 pressure. The transition from the liquid crystal phase to the calcined mesoporous silicas, formed upon condensation and drying, was also studied in detail. Powder X-ray diffraction, transmission electron microscopy, and nitrogen adsorption techniques were used to establish pore diameters, silica wall widths, and the hexagonal packing of the pores within the calcined silicas. Using a direct templating method, the diameters of mesopores and the spacing between the pores could be tuned with a high level of precision. The swelling process was observed to have no detrimental effects on the quality of silica formed, a distinct advantage over conventional swelling techniques, and all of the silicas synthesized in this study were highly ordered over distances of at least 2000 angstrom.
引用
收藏
页码:4163 / 4167
页数:5
相关论文
共 79 条
[1]   LIQUID-CRYSTALLINE PHASES AS TEMPLATES FOR THE SYNTHESIS OF MESOPOROUS SILICA [J].
ATTARD, GS ;
GLYDE, JC ;
GOLTNER, CG .
NATURE, 1995, 378 (6555) :366-368
[2]  
Bacon G. E., 1975, NEUTRON DIFFRACTION
[3]   THE DETERMINATION OF PORE VOLUME AND AREA DISTRIBUTIONS IN POROUS SUBSTANCES .1. COMPUTATIONS FROM NITROGEN ISOTHERMS [J].
BARRETT, EP ;
JOYNER, LG ;
HALENDA, PP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1951, 73 (01) :373-380
[4]   A NEW FAMILY OF MESOPOROUS MOLECULAR-SIEVES PREPARED WITH LIQUID-CRYSTAL TEMPLATES [J].
BECK, JS ;
VARTULI, JC ;
ROTH, WJ ;
LEONOWICZ, ME ;
KRESGE, CT ;
SCHMITT, KD ;
CHU, CTW ;
OLSON, DH ;
SHEPPARD, EW ;
MCCULLEN, SB ;
HIGGINS, JB ;
SCHLENKER, JL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (27) :10834-10843
[5]   Tailoring pore size of ordered mesoporous silicas using one or two organic auxiliaries as expanders [J].
Blin, JL ;
Su, BL .
LANGMUIR, 2002, 18 (13) :5303-5308
[6]   Pore size engineering of mesoporous silicas using decane as expander [J].
Blin, JL ;
Otjacques, C ;
Herrier, G ;
Su, BL .
LANGMUIR, 2000, 16 (09) :4229-4236
[7]   Mechanisms of pore size control in MSU-X mesoporous silica [J].
Boissière, C ;
Martines, MAU ;
Tokumoto, M ;
Larbot, A ;
Prouzet, E .
CHEMISTRY OF MATERIALS, 2003, 15 (02) :509-515
[8]  
BRANTON PJ, 1997, CHARACT J POROUS SOL, V668, P60
[9]   Adsorption of gases in multimolecular layers [J].
Brunauer, S ;
Emmett, PH ;
Teller, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 :309-319
[10]   The formation of dimensionally ordered silicon nanowires within mesoporous silica [J].
Coleman, NRB ;
Morris, MA ;
Spalding, TR ;
Holmes, JD .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (01) :187-188