Excision of C-4′-oxidized deoxyribose lesions from double-stranded DNA by human Apurinic/Apyrimidinic endonuclease (Ape1 protein) and DNA polymerase β

被引:85
作者
Xu, YJ [1 ]
Kim, EY [1 ]
Demple, B [1 ]
机构
[1] Harvard Univ, Sch Publ Hlth, Dept Canc Cell Biol, Boston, MA 02115 USA
关键词
D O I
10.1074/jbc.273.44.28837
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Oxidative damage to DNA deoxyribose generates oxidized abasic sites (OAS) that may constitute one-third of ionizing radiation damage. The antitumor drug bleomycin produces exclusively OAS in the farm of C-4-keto-C-1-aldehydes in unbroken DNA strands and 3'-phosphoglycolate esters terminating strand breaks. We investigated whether two human DNA repair enzymes can mediate OAS excision in vitro: Ape1 protein (the main human abasic endonuclease (also called Hap1, Apex, or Ref1)) and DNA polymerase beta, which carries out both the abasic excision and the resynthesis steps. We used a duplex oligonucleotide substrate with one main target for bleomycin-induced damage. Ape1 catalyzed effective incision at the C-4-keto-C-1-aldehyde sites at a rate that may be only a few-fold lower than incision of hydrolytic abasic sites at the same location. Consistent with several previous studies, Ape1 hydrolyzed 3'-phosphoglycolates 25-fold more slowly than C-4-keto-C-1-aldehydes. DNA polymerase beta excised the 5'-terminal OAS formed by Ape1 incision at a rate similar to its removal of unmodified abasic residues. Polymerase beta-mediated excision of 5'-terminal OAS was stimulated by Ape1 as it is for unmodified abasic sites. Escherichia coli Fpg (MutM) protein also excised 5'-terminal GAS, but in our hands, the RecJ protein did not. These observations help define mammalian pathways of OAS repair, point to interactions that might coordinate functional steps, and suggest that still unknown factors may contribute to removal of 3'-phosphoglycolate esters.
引用
收藏
页码:28837 / 28844
页数:8
相关论文
共 40 条
[1]   SEQUENCE-SPECIFIC DOUBLE-STRAND CLEAVAGE OF DNA BY FE BLEOMYCIN .2. MECHANISM AND DYNAMICS [J].
ABSALON, MJ ;
WU, W ;
KOZARICH, JW ;
STUBBE, J .
BIOCHEMISTRY, 1995, 34 (06) :2076-2086
[2]  
ABSALON MJ, 1995, BIOCHEMISTRY-US, V34, P2056
[3]   CLONING, SEQUENCE-ANALYSIS, AND CHROMOSOMAL ASSIGNMENT OF THE MOUSE APEX GENE [J].
AKIYAMA, K ;
NAGAO, K ;
OSHIDA, T ;
TSUTSUI, K ;
YOSHIDA, MC ;
SEKI, S .
GENOMICS, 1995, 26 (01) :63-69
[4]  
Ausubel FA, 1995, CURRENT PROTOCOLS MO
[5]   Interaction of human apurinic endonuclease and DNA polymerase beta in the base excision repair pathway [J].
Bennett, RAO ;
Wilson, DM ;
Wong, D ;
Demple, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (14) :7166-7169
[6]  
BLACKBURN GM, 1990, NUCLEIC ACIDS CHEM B, P71
[7]   REACTIONS OF OXYL RADICALS WITH DNA [J].
BREEN, AP ;
MURPHY, JA .
FREE RADICAL BIOLOGY AND MEDICINE, 1995, 18 (06) :1033-1077
[8]   2 DISTINCT HUMAN DNA DIESTERASES THAT HYDROLYZE 3'-BLOCKING DEOXYRIBOSE FRAGMENTS FROM OXIDIZED DNA [J].
CHEN, DS ;
HERMAN, T ;
DEMPLE, B .
NUCLEIC ACIDS RESEARCH, 1991, 19 (21) :5907-5914
[9]   FREE-RADICAL MECHANISMS INVOLVED IN THE FORMATION OF SEQUENCE-DEPENDENT BISTRANDED DNA LESIONS BY THE ANTITUMOR ANTIBIOTICS BLEOMYCIN, NEOCARZINOSTATIN, AND CALICHEAMICIN [J].
DEDON, PC ;
GOLDBERG, IH .
CHEMICAL RESEARCH IN TOXICOLOGY, 1992, 5 (03) :311-332
[10]  
DEMPLE B, 1994, ANNU REV BIOCHEM, V63, P915, DOI 10.1146/annurev.biochem.63.1.915