Improving electrochemical performance of LiMnPO4 by Zn doping using a facile solid state method

被引:21
作者
Wang, Yourong [1 ]
Chen, Yafang [1 ]
Cheng, Siqing [1 ]
He, Liangnian [1 ]
机构
[1] Wuhan Polytech Univ, Chem & Environm Engn Dept, Wuhan 430023, Hunan, Peoples R China
关键词
Lithium Manganese Phosphates; Doping; Zinc; Lithium Ion Battery; Electrochemistry; LITHIUM-ION BATTERIES; ELECTRODE MATERIALS; HYDROTHERMAL METHOD; CATHODE MATERIAL; OLIVINE; TEMPERATURE; LIFEPO4; MN; FE;
D O I
10.1007/s11814-010-0459-1
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Olivine structure LiMnPO4/C as cathode materials for Li-ion batteries were synthesized via a simple solid-state reaction. Improvement of the electrochemical performance of LiMnPO4/C cathode material was realized significantly by the method of doping Zn. The obtained LiMn0.95Zn0.05PO4/C electrode material was studied by the measurements of X-ray diffraction pattern, scanning electronic microscopy, electrochemical impedance spectroscopy and electrochemical performance. The results indicate that the LiMn0.95Zn0.05PO4/C materials exhibit discharge specific capacity of 140.2 mA h g(-1) at 0.02 C rate and better rate capability. These excellent results are elucidated by EIS test, which showed that there was the decrease of charge transfer resistance and faster lithium-ion diffusion in LiMnPO4/C cathode materials after Zn doping.
引用
收藏
页码:964 / 968
页数:5
相关论文
共 21 条
[1]   Improving the performance of lithium manganese phosphate through divalent cation substitution [J].
Chen, Guoying ;
Wilcox, James D. ;
Richardson, Thomas J. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (11) :A190-A194
[2]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[3]   Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials [J].
Delacourt, C ;
Laffont, L ;
Bouchet, R ;
Wurm, C ;
Leriche, JB ;
Morcrette, M ;
Tarascon, JM ;
Masquelier, C .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (05) :A913-A921
[4]   One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders [J].
Delacourt, C ;
Poizot, P ;
Morcrette, M ;
Tarascon, JM ;
Masquelier, C .
CHEMISTRY OF MATERIALS, 2004, 16 (01) :93-99
[5]   Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K [J].
Dokko, Kaoru ;
Koizumi, Shohei ;
Nakano, Hiroyuki ;
Kanamura, Kiyoshi .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (45) :4803-4810
[6]   Effect of particle size on LiMnPO4 cathodes [J].
Drezen, Thierry ;
Kwon, Nam-Hee ;
Bowen, Paul ;
Teerlinck, Ivo ;
Isono, Motoshi ;
Exnar, Ivan .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :949-953
[7]   Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries [J].
Gao, Fei ;
Tang, Zhiyuan .
ELECTROCHIMICA ACTA, 2008, 53 (15) :5071-5075
[8]   Nano-network electronic conduction in iron and nickel olivine phosphates [J].
Herle, PS ;
Ellis, B ;
Coombs, N ;
Nazar, LF .
NATURE MATERIALS, 2004, 3 (03) :147-152
[9]   Approaching theoretical capacity of LiFePO4 at room temperature at high rates [J].
Huang, H ;
Yin, SC ;
Nazar, LF .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (10) :A170-A172
[10]   Synthesis of nanometer sized Bi2WO6s by a hydrothermal method and their conductivities [J].
Kim, Dong Young ;
Kim, Sujung ;
Yeo, Min-Kyeong ;
Jung, In-Gyung ;
Kang, Misook .
KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2009, 26 (01) :261-264