Generalized Hamiltonian realization of time-invariant nonlinear systems

被引:121
作者
Wang, YZ [1 ]
Li, CW
Cheng, DZ
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Beijing 100080, Peoples R China
[3] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Peoples R China
基金
中国博士后科学基金;
关键词
generalized Hamiltonian realization; feedback dissipative realization; Jacobian matrix; orthogonal decomposition method;
D O I
10.1016/S0005-1098(03)00132-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A key step in applying the Hamiltonian function method is to express the system under consideration into a generalized Hamiltonian system with dissipation, which yields the so-called generalized Hamiltonian realization (GHR). In this paper, we investigate the problem of GHR. Several new methods and the corresponding sufficient conditions are presented. A major result is that if the Jacobian matrix of a time-invariant nonlinear system is nonsingular, the system has a GHR whose structure matrix and Hamiltonian function are given in simple forms. Then the orthogonal decomposition method and a sufficient condition for the feedback dissipative realization are proposed. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1437 / 1443
页数:7
相关论文
共 15 条
[1]   A Hamiltonian viewpoint in the modeling of switching power converters [J].
Escobar, G ;
van der Schaft, AJ ;
Ortega, R .
AUTOMATICA, 1999, 35 (03) :445-452
[2]   Canonical transformation and stabilization of generalized Hamiltonian systems [J].
Fujimoto, K ;
Sugie, T .
SYSTEMS & CONTROL LETTERS, 2001, 42 (03) :217-227
[3]  
Langson W, 1997, P AMER CONTR CONF, P3017, DOI 10.1109/ACC.1997.612011
[4]   Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation [J].
Maschke, B ;
Ortega, R ;
van der Schaft, AJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (08) :1498-1502
[5]  
MASCHKE B. M., 1992, IFAC P, V25, P359
[6]   Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems [J].
Ortega, R ;
van der Schaft, A ;
Maschke, B ;
Escobar, G .
AUTOMATICA, 2002, 38 (04) :585-596
[7]  
Ortega R., 2013, PASSIVITY BASED CONT
[8]  
Shen TL, 2000, IEEE DECIS CONTR P, P4939, DOI 10.1109/CDC.2001.914715
[9]   A general canonical form for feedback passivity of nonlinear systems [J].
Sira-Ramirez, H .
INTERNATIONAL JOURNAL OF CONTROL, 1998, 71 (05) :891-905
[10]  
van der Schaft A. J., 1999, L2- gain and passivity techniques in nonlinear control, V2nd