Positive feedback regulation of a Lycium chinense-derived VDE gene by drought-induced endogenous ABA, and over-expression of this VDE gene improve drought-induced photo-damage in Arabidopsis

被引:25
作者
Guan, Chunfeng [1 ]
Ji, Jing [1 ]
Zhang, Xuqiang [1 ]
Li, Xiaozhou [3 ]
Jin, Chao [1 ]
Guan, Wenzhu [2 ]
Wang, Gang [1 ]
机构
[1] Tianjin Univ, Sch Environm Sci & Engn, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
[3] Tianjin Med Univ, Dept Med Genet, Gen Hosp, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Photochemical quenching; Endogenous ABA; L; chinense; VDE; Drought stress; ABSCISIC-ACID BIOSYNTHESIS; XANTHOPHYLL-CYCLE; OSMOTIC-STRESS; ZEAXANTHIN EPOXIDASE; MOLECULAR-CLONING; EXCESS LIGHT; WATER-STRESS; PROTECTION; SALT; PHOTOPROTECTION;
D O I
10.1016/j.jplph.2014.06.022
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Violaxanthin de-epoxidase (VDE) plays an important role in protecting the photosynthetic apparatus from photo-damage by dissipating excessively absorbed light energy as heat, via the conversion of violaxanthin (V) to intermediate product antheraxanthin (A) and final product zeaxanthin (Z) under light stress. We have cloned a VDE gene (LcVDE) from Lycium chinense, a deciduous woody perennial halophyte, which can grow in a large variety of soil types. The amino acid sequence of LcVDE has high homology with VDEs in other plants. Under drought stress, relative expression of LcVDE and the de-epoxidation ratio (Z + 0.5 A)/(V + A + Z) increased rapidly, and non-photochemical quenching (NPQ) also rose. Interestingly, these elevations induced by drought stress were reduced by the topical administration of abamine SG, a potent ABA inhibitor via inhibition of NCED in the ABA synthesis pathway. Until now, little has been done to explore the relationship between endogenous ABA and the expression of VDE genes. Since V serves as a common precursor for ABA, these data support the possible involvement of endogenous ABA in the positive feedback regulation of LcVDE gene expression in L. chinense under drought stress. Moreover, the LcVDE may be involved in modulating the level of photosynthesis damage caused by drought stress. Furthermore, the ratio of (Z + 0.5 A)/(V + A + Z) and NPQ increased more in transgenic Arabidopsis over-expressing LcVDE gene than the wild types under drought stress. The maximum quantum yield of primary photochemistry of PSII (Fv/Fm) in transgenic Arabidopsis decreased more slowly during the stressed period than that in wild types under the same conditions. Furthermore, transgenic Arabidopsis over-expressing LcVDE showed increased tolerance to drought stress. (C) 2014 Elsevier GmbH. All rights reserved.
引用
收藏
页码:26 / 36
页数:11
相关论文
共 55 条
[1]   A Structural Basis for the pH-Dependent Xanthophyll Cycle in Arabidopsis thaliana [J].
Arnoux, Pascal ;
Morosinotto, Tomas ;
Saga, Giorgia ;
Bassi, Roberto ;
Pignol, David .
PLANT CELL, 2009, 21 (07) :2036-2044
[2]   Photosynthesis under stressful environments: An overview [J].
Ashraf, M. ;
Harris, P. J. C. .
PHOTOSYNTHETICA, 2013, 51 (02) :163-190
[3]   Expression studies of the zeaxanthin epoxidase gene in Nicotiana plumbaginifolia [J].
Audran, C ;
Borel, C ;
Frey, A ;
Sotta, B ;
Meyer, C ;
Simonneau, T ;
Marion-Poll, A .
PLANT PHYSIOLOGY, 1998, 118 (03) :1021-1028
[4]  
Bechtold N, 1998, METH MOL B, V82, P259
[5]   Xanthophyll biosynthesis - Cloning, expression, functional reconstitution, and regulation of beta-cyclohexenyl carotenoid epoxidase from pepper (Capsicum annuum) [J].
Bouvier, F ;
dHarlingue, A ;
Hugueney, P ;
Marin, E ;
MarionPoll, A ;
Camara, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (46) :28861-28867
[6]  
Bugos R, 1996, P NATL ACAD SCI US
[7]   Xanthophyll cycle enzymes are members of the lipocalin family, the first identified from plants [J].
Bugos, RC ;
Hieber, AD ;
Yamamoto, HY .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (25) :15321-15324
[8]   Identification, expression, and evolutionary analyses of plant lipocalins [J].
Charron, JBF ;
Ouellet, F ;
Pelletier, M ;
Danyluk, J ;
Chauve, C ;
Sarhan, F .
PLANT PHYSIOLOGY, 2005, 139 (04) :2017-2028
[9]   A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions [J].
Cheng, WH ;
Endo, A ;
Zhou, L ;
Penney, J ;
Chen, HC ;
Arroyo, A ;
Leon, P ;
Nambara, E ;
Asami, T ;
Seo, M ;
Koshiba, T ;
Sheen, J .
PLANT CELL, 2002, 14 (11) :2723-2743
[10]   Abscisic Acid: Emergence of a Core Signaling Network [J].
Cutler, Sean R. ;
Rodriguez, Pedro L. ;
Finkelstein, Ruth R. ;
Abrams, Suzanne R. .
ANNUAL REVIEW OF PLANT BIOLOGY, VOL 61, 2010, 61 :651-679