Enhanced concentrations of PAHs in groundwater at a coal tar site

被引:100
作者
MacKay, AA [1 ]
Gschwend, PM [1 ]
机构
[1] MIT, Dept Civil & Environm Engn, Ralph M Parsons Lab, Cambridge, MA 02139 USA
关键词
D O I
10.1021/es0014786
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Concentrations of polycyclic aromatic hydrocarbons (PAHs) in groundwater at a coal tar site were elevated by factors ranging from 3 (pyrene) to 50 (indeno[1,2,3-cd]pyrene) over purely dissolved concentrations. Air-groundwater surface tension measurements (70.6 +/- 3 dyn/cm) were not sufficiently different from air-pure water measures (72.2 +/- 0.1 dyn/cm) to ascribe the observed enrichments to either cosolvents or surfactants in the groundwater. Excess pyrene was associated with colloids that passed an ultrafilter at ambient pH but became ultrafilterable when the groundwater pH was lowered to 1.This suggested pyrene association with humic acids. Given the decrease in groundwater total organic carbon (TOC) of 4 mg(C)/L upon acidification and ultrafiltration, a partition coefficient of 10(5) L/kg(C) was estimated for this pyrene association. Use of the results for pyrene and scaling for the differences in PAH hydrophobicities enabled good predictions of the observed enrichments of less watersoluble PAHs in the groundwater. This is strong field evidence indicating colloid-facilitated transport of HOCs in groundwater. Assuming that humic-bound PAHs were as mobile as the dissolved PAHs, the fluxes of individual PAHs (e.g., benzo[a]pyrene) from the tar source were as much as 20 times greater than estimates based solely on tar-water partitioning predictions.
引用
收藏
页码:1320 / 1328
页数:9
相关论文
共 43 条
[1]   FACTORS AFFECTING THE SURFACE-TENSION OF SOIL SOLUTIONS AND SOLUTIONS OF HUMIC ACIDS [J].
ANDERSON, MA ;
HUNG, AYC ;
MILLS, D ;
SCOTT, MS .
SOIL SCIENCE, 1995, 160 (02) :111-116
[2]   FLUORESCENT POLYCYCLIC AROMATIC-HYDROCARBONS AS PROBES FOR STUDYING THE IMPACT OF COLLOIDS ON POLLUTANT TRANSPORT IN GROUNDWATER [J].
BACKHUS, DA ;
GSCHWEND, PM .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1990, 24 (08) :1214-1223
[3]   SAMPLING COLLOIDS AND COLLOID-ASSOCIATED CONTAMINANTS IN GROUND-WATER [J].
BACKHUS, DA ;
RYAN, JN ;
GROHER, DM ;
MACFARLANE, JK ;
GSCHWEND, PM .
GROUND WATER, 1993, 31 (03) :466-479
[4]   EFFECT OF MICELLAR SOLUBILIZATION ON BIODEGRADATION RATES OF HYDROCARBONS [J].
BURY, SJ ;
MILLER, CA .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1993, 27 (01) :104-110
[5]   Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity [J].
Chin, YP ;
Aiken, GR ;
Danielsen, KM .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1997, 31 (06) :1630-1635
[6]   PARTITIONING OF POLYCYCLIC AROMATIC-HYDROCARBONS TO MARINE POREWATER ORGANIC COLLOIDS [J].
CHIN, YP ;
GSCHWEND, PM .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1992, 26 (08) :1621-1626
[7]   MOLECULAR-WEIGHT, POLYDISPERSITY, AND SPECTROSCOPIC PROPERTIES OF AQUATIC HUMIC SUBSTANCES [J].
CHIN, YP ;
AIKEN, G ;
OLOUGHLIN, E .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1994, 28 (11) :1853-1858
[8]  
CHIN YP, 1991, ORGANIC SUBSTANCES S, P107
[9]   WATER SOLUBILITY ENHANCEMENT OF SOME ORGANIC POLLUTANTS AND PESTICIDES BY DISSOLVED HUMIC AND FULVIC-ACIDS [J].
CHIOU, CT ;
MALCOLM, RL ;
BRINTON, TI ;
KILE, DE .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1986, 20 (05) :502-508
[10]   A COMPARISON OF WATER SOLUBILITY ENHANCEMENTS OF ORGANIC SOLUTES BY AQUATIC HUMIC MATERIALS AND COMMERCIAL HUMIC ACIDS [J].
CHIOU, CT ;
KILE, DE ;
BRINTON, TI ;
MALCOLM, RL ;
LEENHEER, JA ;
MACCARTHY, P .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1987, 21 (12) :1231-1234