Computational strategy for tuning spectral properties of red fluorescent proteins

被引:20
作者
Topol, I. [1 ]
Collins, J. [1 ]
Savitsky, A. [2 ,3 ]
Nemukhin, A. [2 ,4 ]
机构
[1] NCI, SAIC Frederick Inc, Informat Syst Program, Adv Biomed Comp Ctr, Frederick, MD 21702 USA
[2] Moscow MV Lomonosov State Univ, Dept Chem, Moscow 119991, Russia
[3] Russian Acad Sci, AN Bach Inst Biochem, Moscow 119071, Russia
[4] Russian Acad Sci, NM Emanuel Inst Biochem Phys, Moscow 119334, Russia
基金
俄罗斯基础研究基金会; 美国国家卫生研究院;
关键词
Red fluorescent proteins; Photoabsorption spectra; Quantum calculations; Electric field influence; MONOMERIC RED; CHROMOPHORE; VARIANTS; MFRUITS; ASFP595; COLOR;
D O I
10.1016/j.bpc.2011.05.016
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Computational methods of quantum chemistry are used to characterize structures and vertical excitation energies of the S-0-S-1 optical transitions in the chromophore binding pockets of the red fluorescent proteins DsRed and of its artificial mutant mCherry. As previously shown, optimizing the equilibrium geometry configurations with B3LYP density functional theory, followed by ZINDO calculations of the electronic excitations, yields positions of the optical bands in good agreement with experimental data. These large scale quantum calculations elucidate the role of the hydrogen bonded network as well as point mutations in the absorption spectra of the DsRed and mCherry proteins. The effect of an external electric field applied to the fluorescent protein chromophores is examined and shows that such fields may result in large shifts in spectral bands. These strategies can be applied for rational design of the fluorescent proteins by site-directed mutagenesis. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:91 / 95
页数:5
相关论文
共 21 条
[1]   Hue-shifted monomeric variants of Clavularia cyan fluorescent protein:: identification of the molecular determinants of color and applications in fluorescence imaging [J].
Ai, Hui-Wang ;
Olenych, Scott G. ;
Wong, Peter ;
Davidson, Michael W. ;
Campbell, Robert E. .
BMC BIOLOGY, 2008, 6 (1)
[2]   Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein:: structural characterization and applications in fluorescence imaging [J].
Ai, Hui-wang ;
Henderson, J. Nathan ;
Remington, S. James ;
Campbell, Robert E. .
BIOCHEMICAL JOURNAL, 2006, 400 (531-540) :531-540
[3]   Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral [J].
Baird, GS ;
Zacharias, DA ;
Tsien, RY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (22) :11984-11989
[4]   A monomeric red fluorescent protein [J].
Campbell, RE ;
Tour, O ;
Palmer, AE ;
Steinbach, PA ;
Baird, GS ;
Zacharias, DA ;
Tsien, RY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (12) :7877-7882
[5]   Fast protein dynamics probed with infrared vibrational echo experiments [J].
Fayer, MD .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2001, 52 :315-356
[6]  
Frisch M. J., 2004, GAUSSIAN 03
[7]   Review - The fluorescent toolbox for assessing protein location and function [J].
Giepmans, BNG ;
Adams, SR ;
Ellisman, MH ;
Tsien, RY .
SCIENCE, 2006, 312 (5771) :217-224
[8]   trans and cis Chrornophore structures in the kindling fluorescent protein asFP595 [J].
Grigorenko, Bella ;
Savitsky, Alexander ;
Topol, Igor ;
Burt, Stanley ;
Nemukhin, Alexander .
CHEMICAL PHYSICS LETTERS, 2006, 424 (1-3) :184-188
[9]   Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics [J].
Li, Isaac T. ;
Pham, Elizabeth ;
Truong, Kevin .
BIOTECHNOLOGY LETTERS, 2006, 28 (24) :1971-1982
[10]   Fluorescent proteins from nonbioluminescent Anthozoa species [J].
Matz, MV ;
Fradkov, AF ;
Labas, YA ;
Savitsky, AP ;
Zaraisky, AG ;
Markelov, ML ;
Lukyanov, SA .
NATURE BIOTECHNOLOGY, 1999, 17 (10) :969-973