Solving linear fractional bilevel programs

被引:18
作者
Calvete, HI
Galé, C
机构
[1] Univ Zaragoza, Fac Ciencias, Dpto Metodos Estadist, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, Dpto Metodos Estadist, CPS, Zaragoza 50018, Spain
关键词
bilevel; fractional; quasiconcave; quasiconvex; Kth-best;
D O I
10.1016/j.orl.2003.07.003
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we prove that an optimal solution to the linear fractional bilevel programming problem occurs at a boundary feasible extreme point. Hence, the Kth-best algorithm can be proposed to solve the problem. This property also applies to quasiconcave bilevel problems provided that the first level objective function is explicitly quasimonotonic. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:143 / 151
页数:9
相关论文
共 14 条
[1]  
AVRIEL M, 1988, GENERALIZED CONCAVIT
[2]   AN EXPLICIT SOLUTION TO THE MULTILEVEL PROGRAMMING PROBLEM [J].
BARD, JF ;
FALK, JE .
COMPUTERS & OPERATIONS RESEARCH, 1982, 9 (01) :77-100
[3]  
Bard JF, 1998, Practical Bilevel Optimization: Algorithms and Applications
[4]   2-LEVEL LINEAR-PROGRAMMING [J].
BIALAS, WF ;
KARWAN, MH .
MANAGEMENT SCIENCE, 1984, 30 (08) :1004-1020
[5]   On the quasiconcave bilevel programming problem [J].
Calvete, HI ;
Gale, C .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 98 (03) :613-622
[6]  
Charnes A., 1962, Naval Res Logist Quart, V9, P181, DOI [DOI 10.1002/NAV.3800090303, 10.1002/nav.3800090303]
[7]   SOME PROPERTIES OF EXPLICITLY QUASICONCAVE FUNCTIONS [J].
DANAO, RA .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 74 (03) :457-468
[8]  
Dempe S., 2002, Foundations of bilevel programming, DOI DOI 10.1007/B101970
[9]   ON BILEVEL PROGRAMMING .1. GENERAL NONLINEAR CASES [J].
FALK, JE ;
LIU, JM .
MATHEMATICAL PROGRAMMING, 1995, 70 (01) :47-72
[10]  
KONNO H, 1995, HDB GLOBAL OPTIMIZAT