Chemically segregated optical and microphysical properties of ambient aerosols measured in a single-particle mass spectrometer

被引:46
作者
Moffet, Ryan C. [1 ]
Qin, Xueying [1 ]
Rebotier, Thomas
Furutani, Hiroshi [1 ]
Prather, Kimberly A. [2 ]
机构
[1] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Chem & Biochem, Scripps Inst Oceanog, La Jolla, CA 92093 USA
关键词
D O I
10.1029/2007JD009393
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This paper describes results from the first direct measurements of the size- resolved optical properties as a function of chemical mixing states for atmospheric particle types sampled in Mexico City and Riverside, California. The coupled size, chemistry, and optical measurements were used to derive refractive indices and effective densities for chemically distinct particle mixing states. On the basis of the measured dependence of scattering intensity as a function of relative humidity and size, the Riverside particles contained detectable amounts of liquid water, whereas the Mexico City particles were relatively dry. Aerosol particles in Mexico City were observed to exhibit a wide range of densities ( 1.1-3.4 g/cm(3)), suggesting a dynamic, externally mixed aerosol population. Daily variations were observed as the particles in Mexico City underwent photochemical aging processes leading to a diurnal variation in particle morphology. In contrast, the optical properties of the Riverside aerosol, sampled during the fall season, were strongly impacted by the condensation of water and ammonium nitrate during periods of intense pollution buildup, resulting in microphysical properties that were similar across mixing states for a specific relative humidity.
引用
收藏
页数:11
相关论文
共 44 条
[1]   Reduction of tropical cloudiness by soot [J].
Ackerman, AS ;
Toon, OB ;
Stevens, DE ;
Heymsfield, AJ ;
Ramanathan, V ;
Welton, EJ .
SCIENCE, 2000, 288 (5468) :1042-1047
[2]  
BOHREN C, 1981, ABSORPTION SCATTERIN
[3]   Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer [J].
Canagaratna, M. R. ;
Jayne, J. T. ;
Jimenez, J. L. ;
Allan, J. D. ;
Alfarra, M. R. ;
Zhang, Q. ;
Onasch, T. B. ;
Drewnick, F. ;
Coe, H. ;
Middlebrook, A. ;
Delia, A. ;
Williams, L. R. ;
Trimborn, A. M. ;
Northway, M. J. ;
DeCarlo, P. F. ;
Kolb, C. E. ;
Davidovits, P. ;
Worsnop, D. R. .
MASS SPECTROMETRY REVIEWS, 2007, 26 (02) :185-222
[4]   CLIMATE FORCING BY ANTHROPOGENIC AEROSOLS [J].
CHARLSON, RJ ;
SCHWARTZ, SE ;
HALES, JM ;
CESS, RD ;
COAKLEY, JA ;
HANSEN, JE ;
HOFMANN, DJ .
SCIENCE, 1992, 255 (5043) :423-430
[5]   Thermodynamic model of the system H+-NH4+-Na+-SO42--NB3--Cl--H2O at 298.15 K [J].
Clegg, SL ;
Brimblecombe, P ;
Wexler, AS .
JOURNAL OF PHYSICAL CHEMISTRY A, 1998, 102 (12) :2155-2171
[6]   Laboratory and ambient particle density determinations using light scattering in conjunction with aerosol mass spectrometry [J].
Cross, Eben S. ;
Slowik, Jay G. ;
Davidovits, Paul ;
Allan, James D. ;
Worsnop, Douglas R. ;
Jayne, John T. ;
Lewis, David K. ;
Canagaratna, Manjula ;
Onasch, Timothy B. .
AEROSOL SCIENCE AND TECHNOLOGY, 2007, 41 (04) :343-359
[7]   DISCRETE-DIPOLE APPROXIMATION FOR SCATTERING CALCULATIONS [J].
DRAINE, BT ;
FLATAU, PJ .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (04) :1491-1499
[8]  
Egan W. G., 1979, OPTICAL PROPERTIES I
[9]   Real-time analysis of individual atmospheric aerosol particles: Design and performance of a portable ATOFMS [J].
Gard, E ;
Mayer, JE ;
Morrical, BD ;
Dienes, T ;
Fergenson, DP ;
Prather, KA .
ANALYTICAL CHEMISTRY, 1997, 69 (20) :4083-4091
[10]   Direct observation of heterogeneous chemistry in the atmosphere [J].
Gard, EE ;
Kleeman, MJ ;
Gross, DS ;
Hughes, LS ;
Allen, JO ;
Morrical, BD ;
Fergenson, DP ;
Dienes, T ;
Gälli, ME ;
Johnson, RJ ;
Cass, GR ;
Prather, KA .
SCIENCE, 1998, 279 (5354) :1184-1187