Synchronization of van der Pol oscillator and Chen chaotic dynamical system

被引:12
作者
Elabbasy, E. M. [1 ]
EI-Dessoky, M. M. [1 ]
机构
[1] Mansoura Univ, Dept Mat, Fac Sci, Mansoura 35516, Egypt
关键词
D O I
10.1016/j.chaos.2006.08.039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper addresses the synchronization problem of two different electronic circuits by using nonlinear control function. This technique is applied to achieve synchronization for the stable van der Pol oscillator and Chen chaotic dynamical system. Numerical simulations results are given to demonstrate the effectiveness of the proposed control method. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1425 / 1435
页数:11
相关论文
共 27 条
[1]  
Afraimovich V. S., 1986, Radiophysics and Quantum Electronics, V29, P795, DOI 10.1007/BF01034476
[2]  
AFRAIMOVICH VS, 1992, INT J BIFURCAT CHAOS, V2, P633
[3]  
AHMET U, 2006, CHAOS SOLITON FRACT, V27, P1292
[4]   SYNCHRONIZING CHAOTIC CIRCUITS [J].
CARROLL, TL ;
PECORA, LM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04) :453-456
[5]  
CARTWRIGHT M, 1968, SOME PROBLEMS REAL C
[6]  
CARTWRIGHT M, 1957, ACTA MATH, V79, P267
[7]  
CARTWRIGHT ML, 1945, J LOND MATH SOC, V20, DOI DOI 10.1112/JLMS/S1-20.3.180
[8]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[9]   Adaptive synchronization of a hyperchaotic system with uncertain parameter [J].
Elabbasy, E. M. ;
Agiza, H. N. ;
El-Dessoky, M. M. .
CHAOS SOLITONS & FRACTALS, 2006, 30 (05) :1133-1142
[10]   STABLE SUBHARMONICS OF THE FORCED VANDERPOL EQUATION [J].
ELABBASY, EM ;
JAMES, EM .
IMA JOURNAL OF APPLIED MATHEMATICS, 1983, 31 (03) :269-279