Estimation in partially linear models

被引:45
作者
Eubank, RL
Kambour, EL
Kim, JT
Klipple, K
Reese, CS
Schimek, M
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[2] Taegu Univ, Dept Stat, Taegu, South Korea
[3] Graz Univ, Dept Stat, Graz, Austria
关键词
order n algorithm; smoothing spline; Speckman estimator; variance estimation;
D O I
10.1016/S0167-9473(98)00054-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Order n algorithms are developed for computing the estimated mean vector, regression coefficients, standard errors and smoothing parameter selection criteria for Speckman smoothing spline estimators in partially linear models. A difference type variance estimator is proposed and shown to be root n-consistent. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:27 / 34
页数:8
相关论文
共 13 条
[1]  
de Boor C., 1978, PRACTICAL GUIDE SPLI, DOI DOI 10.1007/978-1-4612-6333-3
[2]  
Draper N. R., 1980, Applied Statistics, V29, P128, DOI 10.2307/2986297
[3]  
Eubank R.L., 1988, SPLINE SMOOTHING NON
[4]  
Franklin J.N., 1968, Matrix Theory
[5]  
GASSER T, 1986, BIOMETRIKA, V73, P625
[6]  
GREEN P, 1985, J R STAT SOC B, V47, P299
[7]   ASYMPTOTICALLY OPTIMAL DIFFERENCE-BASED ESTIMATION OF VARIANCE IN NONPARAMETRIC REGRESSION [J].
HALL, P ;
KAY, JW ;
TITTERINGTON, DM .
BIOMETRIKA, 1990, 77 (03) :521-528
[8]   SMOOTHING NOISY DATA WITH SPLINE FUNCTIONS [J].
HUTCHINSON, MF ;
de Hoog, FR .
NUMERISCHE MATHEMATIK, 1985, 47 (01) :99-106
[9]   COMPUTATION OF SMOOTHING AND INTERPOLATING NATURAL SPLINES VIA LOCAL BASES [J].
LYCHE, T ;
SCHUMAKER, LL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (06) :1027-1038
[10]   SMOOTHING BY SPLINE FUNCTIONS [J].
REINSCH, CH .
NUMERISCHE MATHEMATIK, 1967, 10 (03) :177-&