Structure of yeast Dom34 - A protein related to translation termination factor eRF1 and involved in No-Go decay

被引:72
作者
Graille, Marc [1 ]
Chaillet, Maxime [1 ]
van Tilbeurgh, Herman [1 ]
机构
[1] Univ Paris 11, CNRS, Inst Biochim & Biophys Mol & Cellulaire, UMR 8619,IFR 115, F-91405 Orsay, France
关键词
D O I
10.1074/jbc.M708224200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The yeast protein Dom34 has been described to play a critical role in a newly identified mRNA decay pathway called No-Go decay. This pathway clears cells from mRNAs inducing translational stalls through endonucleolytic cleavage. Dom34 is related to the translation termination factor eRF1 and physically interacts with Hbs1, which is itself related to eRF3. We have solved the 2.5-angstrom resolution crystal structure of Saccharomyces cerevisiae Dom34. This protein is organized in three domains with the central and C-terminal domains structurally homologous to those from eRF1. The N-terminal domain of Dom34 is different from eRF1. It adopts a Sm-fold that is often involved in the recognition of mRNA stem loops or in the recruitment of mRNA degradation machinery. The comparison of eRF1 and Dom34 domains proposed to interact directly with eRF3 and Hbs1, respectively, highlights striking structural similarities with eRF1 motifs identified to be crucial for the binding to eRF3. In addition, as observed for eRF1 that enhances eRF3 binding to GTP, the interaction of Dom34 with Hbs1 results in an increase in the affinity constant of Hbs1 for GTP but not GDP. Taken together, these results emphasize that eukaryotic cells have evolved two structurally related complexes able to interact with ribosomes either paused at a stop codon or stalled in translation by the presence of a stable stem loop and to trigger ribosome release by catalyzing chemical bond hydrolysis.
引用
收藏
页码:7145 / 7154
页数:10
相关论文
共 73 条
[1]   PHENIX:: building new software for automated crystallographic structure determination [J].
Adams, PD ;
Grosse-Kunstleve, RW ;
Hung, LW ;
Ioerger, TR ;
McCoy, AJ ;
Moriarty, NW ;
Read, RJ ;
Sacchettini, JC ;
Sauter, NK ;
Terwilliger, TC .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2002, 58 :1948-1954
[2]   Disruption of the pelota gene causes early embryonic lethality and defects in cell cycle progression [J].
Adham, IM ;
Sallam, MA ;
Steding, G ;
Korabiowska, M ;
Brinck, U ;
Hoyer-Fender, S ;
Oh, C ;
Engel, W .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (04) :1470-1476
[3]   In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRF1 and eRF3 [J].
Alkalaeva, Elena Z. ;
Pisarev, Andrey V. ;
Frolova, Lyudmila Y. ;
Kisselev, Lev L. ;
Pestova, Tatyana V. .
CELL, 2006, 125 (06) :1125-1136
[4]   A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay [J].
Amrani, N ;
Ganesan, R ;
Kervestin, S ;
Mangus, DA ;
Ghosh, S ;
Jacobson, A .
NATURE, 2004, 432 (7013) :112-118
[5]   Early nonsense: mRNA decay solves a translational problem [J].
Amrani, Nadia ;
Sachs, Matthew S. ;
Jacobson, Allan .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2006, 7 (06) :415-425
[6]   Ski7p G protein interacts with the exosome and the Ski complex for 3′-to-5′ mRNA decay in yeast [J].
Araki, Y ;
Takahashi, S ;
Kobayashi, T ;
Kajiho, H ;
Hoshino, S ;
Katada, T .
EMBO JOURNAL, 2001, 20 (17) :4684-4693
[7]   ATOMIC-STRUCTURE OF THE RUVC RESOLVASE - A HOLLIDAY JUNCTION-SPECIFIC ENDONUCLEASE FROM ESCHERICHIA-COLI [J].
ARIYOSHI, M ;
VASSYLYEV, DG ;
IWASAKI, H ;
NAKAMURA, H ;
SHINAGAWA, H ;
MORIKAWA, K .
CELL, 1994, 78 (06) :1063-1072
[8]   A conserved role for cytoplasmic poly(A)-binding protein 1 (PABPC1) in nonsense-mediated mRNA decay [J].
Behm-Ansmant, Isabelle ;
Gatfield, David ;
Rehwinkel, Jan ;
Hilgers, Valerie ;
Izaurralde, Elisa .
EMBO JOURNAL, 2007, 26 (06) :1591-1601
[9]   Terminating eukaryote translation: Domain 1 of release factor eRF1 functions in stop codon recognition [J].
Bertram, G ;
Bell, HA ;
Ritchie, DW ;
Fullerton, G ;
Stansfield, I .
RNA, 2000, 6 (09) :1236-1247
[10]   A Sm-like protein complex that participates in mRNA degradation [J].
Bouveret, E ;
Rigaut, G ;
Shevchenko, A ;
Wilm, M ;
Séraphin, B .
EMBO JOURNAL, 2000, 19 (07) :1661-1671