Endothelium-dependent hyperpolarization and intercellular electrical coupling in guinea-pig mesenteric arterioles

被引:172
作者
Yamamoto, Y [1 ]
Imaeda, K [1 ]
Suzuki, H [1 ]
机构
[1] Nagoya City Univ, Sch Med, Dept Physiol, Mizuho Ku, Nagoya, Aichi 4678601, Japan
来源
JOURNAL OF PHYSIOLOGY-LONDON | 1999年 / 514卷 / 02期
关键词
D O I
10.1111/j.1469-7793.1999.505ae.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
1. Using the conventional whole-cell clamp method, the electrical responses of individual smooth muscle and endothelial cells to acetylcholine (ACh) were observed in multicellular preparations where the two types of cells remained in close apposition. 2. In both types of cells, ACh induced similar hyperpolarizing responses which, when recorded in current clamp mode, had two phases (an initial fast and a second slower phase). 3. After Mocking gap junctions, including myoendothelial junctions, with 18 beta-glycyrrhetinic acid, ACh induced an outward current with two phases in voltage-clamped endothelial cells. The outward current appeared around -90 mV and increased linearly with the membrane depolarization. 4. In smooth muscle cells, ACh failed to induce a membrane current after gap junctions had been blocked with 18 beta-glycyrrhetinic acid. The inhibition of ACh-induced response by 18 beta-glycyrrhetinic acid was observed using either sharp or patch electrodes. 5. Nominally Ca2+-free solution reduced the initial phase and abolished the second phase of ACh-induced responses of endothelial cells. Both phases were also reduced by charybdotoxin (CTX). 6. Our results indicate that in guinea-pig mesenteric arterioles, ACh hyperpolarizes endothelial cells by activating Ca2+-activated K+ channels which are sensitive to CTX. On the other hand, hyperpolarizing responses detected in smooth muscle cells seem to originate in endothelial cells and conduct to the muscle layer via myoendothelial gap junctions.
引用
收藏
页码:505 / 513
页数:9
相关论文
共 28 条
[1]   BIDIRECTIONAL ELECTRICAL COMMUNICATION BETWEEN SMOOTH-MUSCLE AND ENDOTHELIAL-CELLS IN THE PIG CORONARY-ARTERY [J].
BENY, JL ;
PACICCA, C .
AMERICAN JOURNAL OF PHYSIOLOGY, 1994, 266 (04) :H1465-H1472
[2]  
Beny JL, 1997, PFLUG ARCH EUR J PHY, V433, P364
[3]   HYPERPOLARIZATION AND INCREASED FREE CALCIUM IN ACETYLCHOLINE-STIMULATED ENDOTHELIAL-CELLS [J].
BUSSE, R ;
FICHTNER, H ;
LUCKHOFF, A ;
KOHLHARDT, M .
AMERICAN JOURNAL OF PHYSIOLOGY, 1988, 255 (04) :H965-H969
[4]   Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors [J].
Campbell, WB ;
Gebremedhin, D ;
Pratt, PF ;
Harder, DR .
CIRCULATION RESEARCH, 1996, 78 (03) :415-423
[5]   Central role of heterocellular gap junctional communication in endothelium-dependent relaxations of rabbit arteries [J].
Chaytor, AT ;
Evens, WH ;
Griffith, TM .
JOURNAL OF PHYSIOLOGY-LONDON, 1998, 508 (02) :561-573
[6]   HYPERPOLARIZATION OF ARTERIAL SMOOTH-MUSCLE INDUCED BY ENDOTHELIAL HUMORAL SUBSTANCES [J].
CHEN, G ;
YAMAMOTO, Y ;
MIWA, K ;
SUZUKI, H .
AMERICAN JOURNAL OF PHYSIOLOGY, 1991, 260 (06) :H1888-H1892
[7]   ACETYLCHOLINE RELEASES ENDOTHELIUM-DERIVED HYPERPOLARIZING FACTOR AND EDRF FROM RAT-BLOOD VESSELS [J].
CHEN, G ;
SUZUKI, H ;
WESTON, AH .
BRITISH JOURNAL OF PHARMACOLOGY, 1988, 95 (04) :1165-1174
[8]   CHARACTERIZATION OF ACETYLCHOLINE-INDUCED MEMBRANE HYPERPOLARIZATION IN ENDOTHELIAL-CELLS [J].
CHEN, GF ;
CHEUNG, DW .
CIRCULATION RESEARCH, 1992, 70 (02) :257-263
[9]   REVERSIBLE INHIBITION OF INTERCELLULAR JUNCTIONAL COMMUNICATION BY GLYCYRRHETINIC ACID [J].
DAVIDSON, JS ;
BAUMGARTEN, IM ;
HARLEY, EH .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1986, 134 (01) :29-36
[10]   Determination of gap junctional intercellular communication by capacitance measurements [J].
deRoos, ADG ;
vanZoelen, EJJ ;
Theuvenet, APR .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1996, 431 (04) :556-563