Local uniqueness for the Dirichlet-to-Neumann map via the two-plane transform

被引:28
作者
Greenleaf, A [1 ]
Uhlmann, G
机构
[1] Univ Rochester, Dept Math, Rochester, NY 14627 USA
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
D O I
10.1215/S0012-7094-01-10837-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Cauchy data associated to the Schrodinger equation with a potential on a bounded domain Omega subset of R-n, n greater than or equal to 3. We show that the integral of the potential over a two-plane Pi is determined by the Cauchy data of certain exponentially growing solutions on any open subset U subset of partial derivative Omega which contains Pi boolean AND partial derivative Omega.
引用
收藏
页码:599 / 617
页数:19
相关论文
共 17 条
[1]  
Alessandrini G., 1988, Appl. Anal., V27, P153, DOI [10.1080/00036818808839730, DOI 10.1080/00036818808839730]
[2]  
[Anonymous], 1980, PROGR MATH
[3]  
[Anonymous], 1998, APPL MATH SCI
[4]  
Calderon A.P., 1980, Seminar on Numerical Analysis and its Applications to Continuum Physics, Rio de Janeiro, 1980, P65, DOI DOI 10.1590/S0101-82052006000200002
[5]  
Faddeev L. D., 1966, SOV PHYS DOKL, V10, P1033
[6]  
GRISVARD P., 1985, MONOGR STUD MATH, V24
[7]   A periodic Faddeev-type solution operator [J].
Hahner, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 128 (01) :300-308
[8]  
Helgason S., 1965, ACTA MATH, V113, P153, DOI [DOI 10.1007/BF02391776, 10.1007/BF02391776]
[9]   DETERMINING CONDUCTIVITY BY BOUNDARY MEASUREMENTS [J].
KOHN, R ;
VOGELIUS, M .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (03) :289-298
[10]   DETERMINING CONDUCTIVITY BY BOUNDARY MEASUREMENTS .2. INTERIOR RESULTS [J].
KOHN, RV ;
VOGELIUS, M .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (05) :643-667