An artificial neural network approach to transformer fault diagnosis

被引:292
作者
Zhang, Y [1 ]
Ding, X [1 ]
Liu, Y [1 ]
Griffin, PJ [1 ]
机构
[1] DOBLE ENGN CO,WATERTOWN,MA 02172
基金
美国国家科学基金会;
关键词
artificial neural network; dissolved gas analysis (DGA); fault detection and diagnosis; transformers;
D O I
10.1109/61.544265
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an artificial neural network (ANN) approach to diagnose and detect faults in oil-filled power transformers based on dissolved gas-in-oil analysis. A two-step ANN method is used to detect faults with or without cellulose involved. Good diagnosis accuracy is obtained with the proposed approach.
引用
收藏
页码:1836 / 1841
页数:6
相关论文
共 8 条
[1]  
BHATTACHARYYA SK, 1993, NEURAL NETWORK APPRO
[2]  
DING X, 1993, PREDICTING POWER TRA
[3]  
Griffin P. J., 1988, STP998 AM SOC TEST M, P89
[4]  
GRIFFIN PJ, 1995, DOUBL CLIENT C P
[5]  
HALSTEAD WD, 1973, J I PETROL, V59, P239
[6]  
LIN CE, 1993, 57 AM POW C APR CHIC, V8
[7]  
Pao YH, 1989, ADAPTIVE PATTERN REC
[8]   IEEE AND IEC CODES TO INTERPRET INCIPIENT FAULTS IN TRANSFORMERS, USING GAS IN OIL ANALYSIS [J].
ROGERS, RR .
IEEE TRANSACTIONS ON ELECTRICAL INSULATION, 1978, 13 (05) :349-354