Overexpression of IGF-1 exclusively in skeletal muscle prevents age-related decline in the number of dihydropyridine receptors

被引:81
作者
Renganathan, M
Messi, ML
Delbono, O
机构
[1] Wake Forest Univ, Sch Med, Dept Physiol & Pharmacol, Winston Salem, NC 27157 USA
[2] Wake Forest Univ, Sch Med, Sticht Ctr Aging, Winston Salem, NC 27157 USA
[3] Wake Forest Univ, Sch Med, Dept Internal Med Gerontol, Winston Salem, NC 27157 USA
关键词
D O I
10.1074/jbc.273.44.28845
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Excitation-contraction uncoupling has been identified as a mechanism underlying skeletal muscle weakness in aging mammals (sarcopenia). The basic mechanism for excitation-contraction uncoupling is a larger number of ryanodine receptors (RyR1) uncoupled to dihydropyridine receptors (DHPRs) (Delbono, O., O'Rourke, K, S,, and Ettinger, W. H, (1995) J, Membr. Biol. 148, 211-222), In the present study, we used transgenic mice overexpressing human insulin-like growth factor-1 exclusively in skeletal muscle to test the hypothesis that a high concentration of IGF-1 prevents age-related decreases in DHPR number and in muscle force. Transgenic mice express 10-20-fold higher IGF-1 concentrations than nontransgenic mice at all ages (1-24 months). The number of DHPRs is 50-100% higher, and the DHPR/RyR1 ratio is 40% higher in transgenic soleus (predominantly type I fiber muscles), extensor digitorum longus (predominantly type II fiber muscles), and the pool of type I and type II fiber muscles than in nontransgenic young (6 months), adult (12 months), and old (24 months) mice. Furthermore, no age-related changes in DHPRs and the DHPR/RyR1 ratio were observed in transgenic muscles. The specific single twitch and tetanic muscle force in old transgenic soleus and extensor digitorum longus muscles are 50% higher than in old nontransgenic muscles, Taken together, these results support the concept that IGF-1- dependent prevention of age-related decline in DHPR expression is associated with stronger muscle contraction in older transgenic mice.
引用
收藏
页码:28845 / 28851
页数:7
相关论文
共 35 条
[1]   HIGH-AFFINITY [H-3] PN200-110 AND [H-3] RYANODINE BINDING TO RABBIT AND FROG SKELETAL-MUSCLE [J].
ANDERSON, K ;
COHN, AH ;
MEISSNER, G .
AMERICAN JOURNAL OF PHYSIOLOGY, 1994, 266 (02) :C462-C466
[2]   THE JUN PROTO-ONCOGENE IS POSITIVELY AUTOREGULATED BY ITS PRODUCT, JUN/AP-1 [J].
ANGEL, P ;
HATTORI, K ;
SMEAL, T ;
KARIN, M .
CELL, 1988, 55 (05) :875-885
[3]   CA2+ AND ACTIVATION MECHANISMS IN SKELETAL-MUSCLE [J].
ASHLEY, CC ;
MULLIGAN, IP ;
LEA, TJ .
QUARTERLY REVIEWS OF BIOPHYSICS, 1991, 24 (01) :1-73
[4]   The effect of muscle length on intracellular calcium and force in single fibres from mouse skeletal muscle [J].
Balnave, CD ;
Allen, DG .
JOURNAL OF PHYSIOLOGY-LONDON, 1996, 492 (03) :705-713
[5]   STRUCTURAL EVIDENCE FOR DIRECT INTERACTION BETWEEN THE MOLECULAR-COMPONENTS OF THE TRANSVERSE TUBULE SARCOPLASMIC-RETICULUM JUNCTION IN SKELETAL-MUSCLE [J].
BLOCK, BA ;
IMAGAWA, T ;
CAMPBELL, KP ;
FRANZINIARMSTRONG, C .
JOURNAL OF CELL BIOLOGY, 1988, 107 (06) :2587-2600
[6]   CONTRACTILE PROPERTIES OF SKELETAL-MUSCLES FROM YOUNG, ADULT AND AGED MICE [J].
BROOKS, SV ;
FAULKNER, JA .
JOURNAL OF PHYSIOLOGY-LONDON, 1988, 404 :71-82
[7]   ISOMETRIC, SHORTENING, AND LENGTHENING CONTRACTIONS OF MUSCLE-FIBER SEGMENTS FROM ADULT AND OLD MICE [J].
BROOKS, SV ;
FAULKNER, JA .
AMERICAN JOURNAL OF PHYSIOLOGY, 1994, 267 (02) :C507-C513
[9]   CONSTITUTIVE UP-REGULATION OF CALCIUM-CHANNEL CURRENTS IN RAT PHEOCHROMOCYTOMA, CELLS - ROLE OF C-FOS AND C-JUN [J].
CAVALIE, A ;
BERNINGER, B ;
HAAS, CA ;
GARCIA, DE ;
LINDHOLM, D ;
LUX, HD .
JOURNAL OF PHYSIOLOGY-LONDON, 1994, 479 (01) :11-27
[10]   MYOGENIC VECTOR EXPRESSION OF INSULIN-LIKE GROWTH-FACTOR-I STIMULATES MUSCLE-CELL DIFFERENTIATION AND MYOFIBER HYPERTROPHY IN TRANSGENIC MICE [J].
COLEMAN, ME ;
DEMAYO, F ;
YIN, KC ;
LEE, HM ;
GESKE, R ;
MONTGOMERY, C ;
SCHWARTZ, RJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (20) :12109-12116