Rational Concept To Recognize/Extract Single-Walled Carbon Nanotubes with a Specific Chirality

被引:120
作者
Ozawa, Hiroaki [1 ]
Fujigaya, Tsuyohiko [1 ]
Niidome, Yasuro [1 ]
Hotta, Naosuke [2 ]
Fujiki, Michiya [2 ]
Nakashima, Naotoshi [1 ,3 ]
机构
[1] Kyushu Univ, Grad Sch Engn, Dept Appl Chem, Fukuoka 8190395, Japan
[2] Nara Inst Sci & Technol, Grad Sch Mat Sci, Nara 6300192, Japan
[3] Japan Sci & Technol Agcy, Chiyoda Ku, Tokyo 1020075, Japan
关键词
FUEL-CELL ELECTROCATALYST; SELECTIVE DISPERSION; ENRICHMENT; SEPARATION; DIAMETER; NANOPARTICLES; DESIGN;
D O I
10.1021/ja109399f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Single-walled carbon nanotubes (SWNTs) have remarkable and unique electronic, mechanical, and thermal properties, which are closely related to their chiralities; thus, the chirality-selective recognition/extraction of the SWNTs is one of the central issues in nanotube science. However, any rational materials design enabling one to efficiently extract/solubilize pure SWNT with a desired chirality has yet not been demonstrated. Herein we report that certain chiral polyfluorene copolymers can well-recognize SWNTs with a certain chirality preferentially, leading to solubilization of specific chiral SWNTs. The chiral copolymers were prepared by the Ni-0-catalyzed Yamamoto coupling reaction of 2,7-dibromo-9,9-di-n-decylfluorene and 2,7-dibromo-9,9-bis[(S)-(+)-2-methylbutyl]fluorene comonomers. The selectivity of the SWNT chirality was mainly determined by the relative fraction of the achiral and chiral side groups. By a molecular mechanics simulation, the cooperative interaction between the fluorene moiety, alkyl side chain, and graphene wall were responsible for the recognition/dissolution ability of SWNT chirality. This is a first example describing the rational design and synthesis of novel fluorene-based copolymers toward the ::recognition/extraction of targeted (n, m) chirality of the SWNTs.
引用
收藏
页码:2651 / 2657
页数:7
相关论文
共 34 条
[1]   A diameter-selective attack of metallic carbon nanotubes by nitronium ions [J].
An, KH ;
Park, JS ;
Yang, CM ;
Jeong, SY ;
Lim, SC ;
Kang, C ;
Son, JH ;
Jeong, MS ;
Lee, YH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (14) :5196-5203
[2]   X-ray photoemission spectroscopy study of fluorinated single-walled carbon nanotubes [J].
An, KH ;
Heo, JG ;
Jeon, KG ;
Bae, D ;
Jo, CS ;
Yang, CW ;
Park, CY ;
Lee, YH ;
Lee, YS ;
Chung, YS .
APPLIED PHYSICS LETTERS, 2002, 80 (22) :4235-4237
[3]   Sorting carbon nanotubes by electronic structure using density differentiation [J].
Arnold, Michael S. ;
Green, Alexander A. ;
Hulvat, James F. ;
Stupp, Samuel I. ;
Hersam, Mark C. .
NATURE NANOTECHNOLOGY, 2006, 1 (01) :60-65
[4]   Enrichment of single-walled carbon nanotubes by diameter in density gradients [J].
Arnold, MS ;
Stupp, SI ;
Hersam, MC .
NANO LETTERS, 2005, 5 (04) :713-718
[5]   Carbon-based electronics [J].
Avouris, Phaedon ;
Chen, Zhihong ;
Perebeinos, Vasili .
NATURE NANOTECHNOLOGY, 2007, 2 (10) :605-615
[6]   Mechanical and electrical properties of nanotubes [J].
Bernholc, J ;
Brenner, D ;
Nardelli, MB ;
Meunier, V ;
Roland, C .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2002, 32 :347-+
[7]   A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes [J].
Chattopadhyay, D ;
Galeska, L ;
Papadimitrakopoulos, F .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (11) :3370-3375
[8]   Use frequency of traditional Chinese medicine in Taiwan [J].
Chen, Fang-Pey ;
Chen, Tzeng-Ji ;
Kung, Yen-Ying ;
Chen, Yu-Chun ;
Chou, Li-Fang ;
Chen, Fan-Jou ;
Hwang, Shinn-Jang .
BMC HEALTH SERVICES RESEARCH, 2007, 7 (1)
[9]   Bulk separative enrichment in metallic or semiconducting single-walled carbon nanotubes [J].
Chen, ZH ;
Du, X ;
Du, MH ;
Rancken, CD ;
Cheng, HP ;
Rinzler, AG .
NANO LETTERS, 2003, 3 (09) :1245-1249
[10]   Carbon nanotubes: Synthesis, integration, and properties [J].
Dai, HJ .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (12) :1035-1044