In situ nanomechanical testing in focused ion beam and scanning electron microscopes

被引:86
作者
Gianola, D. S. [1 ,2 ]
Sedlmayr, A. [2 ]
Moenig, R. [2 ]
Volkert, C. A. [3 ]
Major, R. C. [4 ]
Cyrankowski, E. [4 ]
Asif, S. A. S. [4 ]
Warren, O. L. [4 ]
Kraft, O. [2 ]
机构
[1] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[2] Karlsruhe Inst Technol, Inst Appl Mat, Karlsruhe, Germany
[3] Univ Gottingen, Inst Mat Phys, Gottingen, Germany
[4] Hysitron Inc, Minneapolis, MN 55344 USA
关键词
LARGE-DEFORMATION MEASUREMENTS; MULTIWALLED CARBON NANOTUBES; MECHANICAL-PROPERTIES; THIN-FILMS; CRYSTAL PLASTICITY; QUANTITATIVE SMALL; STRENGTH; TENSILE; SCALE; BEHAVIOR;
D O I
10.1063/1.3595423
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The recent interest in size-dependent deformation of micro-and nanoscale materials has paralleled both technological miniaturization and advancements in imaging and small-scale mechanical testing methods. Here we describe a quantitative in situ nanomechanical testing approach adapted to a dual-beam focused ion beam and scanning electron microscope. A transducer based on a three-plate capacitor system is used for high-fidelity force and displacement measurements. Specimen manipulation, transfer, and alignment are performed using a manipulator, independently controlled positioners, and the focused ion beam. Gripping of specimens is achieved using electron-beam assisted Pt-organic deposition. Local strain measurements are obtained using digital image correlation of electron images taken during testing. Examples showing results for tensile testing of single-crystalline metallic nanowires and compression of nanoporous Au pillars will be presented in the context of size effects on mechanical behavior and highlight some of the challenges of conducting nanomechanical testing in vacuum environments. (C) 2011 American Institute of Physics. [doi:10.1063/1.3595423]
引用
收藏
页数:12
相关论文
共 103 条
[1]  
[Anonymous], 2009, IMAGE CORRELATION SH, DOI DOI 10.1007/978-0-387-78747-3
[2]  
*ASTM, 1995, E8M ASTM
[3]   Tensile and Compressive Microspecimen Testing of Bulk Nanoporous Gold [J].
Balk, T. John ;
Eberl, Chris ;
Sun, Ye ;
Hemker, Kevin J. ;
Gianola, Daniel S. .
JOM, 2009, 61 (12) :26-31
[4]   Effects of focused ion beam milling on the nanomechanical behavior of a molybdenum-alloy single crystal [J].
Bei, H. ;
Shim, S. .
APPLIED PHYSICS LETTERS, 2007, 91 (11)
[5]   Compressive strengths of molybdenum alloy micro-pillars prepared using a new technique [J].
Bei, H. ;
Shim, S. ;
George, E. P. ;
Miller, M. K. ;
Herbert, E. G. ;
Pharr, G. M. .
SCRIPTA MATERIALIA, 2007, 57 (05) :397-400
[6]   Size effects on the mechanical behavior of nanoporous Au [J].
Biener, Juergen ;
Hodge, Andrea M. ;
Hayes, Joel R. ;
Volkert, Cynthia A. ;
Zepeda-Ruiz, Luis A. ;
Hamza, Alex V. ;
Abraham, Farid F. .
NANO LETTERS, 2006, 6 (10) :2379-2382
[7]   A method for measuring microstructural-scale strains using a scanning electron microscope:: Applications to γ-titanium aluminides [J].
Biery, N ;
De Graef, M ;
Pollock, TM .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2003, 34A (10) :2301-2313
[8]   THE GROWTH OF WHISKERS BY THE REDUCTION OF METAL SALTS [J].
BRENNER, SS .
ACTA METALLURGICA, 1956, 4 (01) :62-74
[9]   TENSILE STRENGTH OF WHISKERS [J].
BRENNER, SS .
JOURNAL OF APPLIED PHYSICS, 1956, 27 (12) :1484-1491
[10]   MECHANISM OF WHISKER GROWTH .3. NATURE OF GROWTH SITES [J].
BRENNER, SS ;
SEARS, GW .
ACTA METALLURGICA, 1956, 4 (03) :268-270