A high-rate, nanocomposite LiFePO4/carbon cathode

被引:215
作者
Sides, CR [1 ]
Croce, F
Young, VY
Martin, CR
Scrosati, B
机构
[1] Univ Florida, Dept Chem, Gainesville, FL 32611 USA
[2] Univ G DAnnunzio, Dept Pharmacol Sci, I-66013 Chieti, Italy
[3] Univ Roma La Sapienza, Dept Chem, I-00185 Rome, Italy
关键词
D O I
10.1149/1.1999916
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We describe here a new type of template-prepared nanostructured LiFePO4 electrode, a nanocomposite consisting of monodispersed nanofibers of the LiFePO4 electrode material mixed with an electronically conductive carbon matrix. This unique nanocomposite morphology allows these electrodes to deliver high capacity, even when discharged at the extreme rates necessary for many pulse-power applications. For example, this nanocomposite electrode delivers almost 100 % of its theoretical discharge capacity at the high discharge rate of 3 degrees C, and 36 % of its theoretical capacity at the enormous discharge rate of 65 degrees C. This new nanocomposite electrode shows such excellent rate capabilities because the nanofiber morphology mitigates the problem of slow Li+-transport in the solid state, and the conductive carbon matrix overcomes the inherently poor electronic conductivity of LiFePO4. (c) 2005 The Electrochemical Society. All rights reserved.
引用
收藏
页码:A484 / A487
页数:4
相关论文
共 17 条
[1]   Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique [J].
Arnold, G ;
Garche, J ;
Hemmer, R ;
Ströbele, S ;
Vogler, C ;
Wohlfahrt-Mehrens, A .
JOURNAL OF POWER SOURCES, 2003, 119 :247-251
[2]   Chemical-vapor deposition-based template synthesis of microtubular TiS2 battery electrodes [J].
Che, G ;
Jirage, KB ;
Fisher, ER ;
Martin, CR ;
Yoneyama, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (12) :4296-4302
[3]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[4]   A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode [J].
Croce, F ;
D'Epifanio, A ;
Hassoun, J ;
Deptula, A ;
Olczac, T ;
Scrosati, B .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (03) :A47-A50
[5]   Effect of surface carbon structure on the electrochemical performance of LiFePO4 [J].
Doeff, MM ;
Hu, YQ ;
McLarnon, F ;
Kostecki, R .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (10) :A207-A209
[6]   Approaching theoretical capacity of LiFePO4 at room temperature at high rates [J].
Huang, H ;
Yin, SC ;
Nazar, LF .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (10) :A170-A172
[7]   Rate capabilities of nanostructured LiMn2O4 electrodes in aqueous electrolyte [J].
Li, NC ;
Patrissi, CJ ;
Che, GL ;
Martin, CR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (06) :2044-2049
[8]   A nanostructured honeycomb carbon anode [J].
Li, NC ;
Mitchell, DT ;
Lee, KP ;
Martin, CR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (07) :A979-A984
[9]   Nanomaterial-based Li-ion battery electrodes [J].
Li, NC ;
Martin, CR ;
Scrosati, B .
JOURNAL OF POWER SOURCES, 2001, 97-8 :240-243
[10]   Electroosmotic flow in template-prepared carbon nanotube membranes [J].
Miller, SA ;
Young, VY ;
Martin, CR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (49) :12335-12342