A smoothing method for a mathematical program with P-matrix linear complementarity constraints

被引:44
作者
Chen, XJ [1 ]
Fukushima, M
机构
[1] Fac Sci & Technol, Dept Math Syst Sci, Hirosaki, Aomori 0368561, Japan
[2] Kyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Kyoto 6068501, Japan
基金
日本学术振兴会;
关键词
mathematical program with equilibrium constraints; P-matrix linear complementarity problem; reformulation; smoothing approximation;
D O I
10.1023/B:COAP.0000013057.54647.6d
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider a mathematical program whose constraints involve a parametric P-matrix linear complementarity problem with the design ( upper level) variables as parameters. Solutions of this complementarity problem define a piecewise linear function of the parameters. We study a smoothing function of this function for solving the mathematical program. We investigate the limiting behaviour of optimal solutions, KKT points and B-stationary points of the smoothing problem. We show that a class of mathematical programs with P-matrix linear complementarity constraints can be reformulated as a piecewise convex program and solved through a sequence of continuously differentiable convex programs. Preliminary numerical results indicate that the method and convex reformulation are promising.
引用
收藏
页码:223 / 246
页数:24
相关论文
共 20 条
[1]   NEWTONS METHOD FOR LINEAR COMPLEMENTARITY-PROBLEMS [J].
AGANAGIC, M .
MATHEMATICAL PROGRAMMING, 1984, 28 (03) :349-362
[2]   Smooth approximations to nonlinear complementarity problems [J].
Chen, BT ;
Harker, PT .
SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (02) :403-420
[3]  
Chen C. H., 1996, COMPUTATIONAL OPTIMI, V5, P97
[4]   Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities [J].
Chen, X ;
Qi, L ;
Sun, D .
MATHEMATICS OF COMPUTATION, 1998, 67 (222) :519-540
[5]  
Chen Y., 1995, Optimization, V32, P193, DOI 10.1080/02331939508844048
[6]  
Clarke F.H., 1983, OPTIMIZATION NONSMOO, DOI DOI 10.1137/1.9781611971309
[7]  
Cottle R, 1992, The Linear Complementarity Problem
[8]   A bundle algorithm applied to bilevel programming problems with non-unique lower level solutions [J].
Dempe, S .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2000, 15 (02) :145-166
[9]   A smoothing method for mathematical programs with equilibrium constraints [J].
Facchinei, F ;
Jiang, HY ;
Qi, LQ .
MATHEMATICAL PROGRAMMING, 1999, 85 (01) :107-134
[10]  
Fischer A., 1992, Optimization, V24, P269, DOI 10.1080/02331939208843795