Transcriptional activation of the glucose transporter GLUT1 in ventricular cardiac myocytes by hypertrophic agonists

被引:65
作者
Montessuit, C
Thorburn, A
机构
[1] Univ Utah, Dept Oncol Sci, Salt Lake City, UT 84112 USA
[2] Univ Utah, Huntsman Canc Inst, Program Human Mol Biol & Genet, Dept Oncol Sci, Salt Lake City, UT 84112 USA
[3] Univ Utah, Huntsman Canc Inst, Program Human Mol Biol & Genet, Dept Human Genet, Salt Lake City, UT 84112 USA
[4] Univ Utah, Huntsman Canc Inst, Program Human Mol Biol & Genet, Dept Internal Med, Salt Lake City, UT 84112 USA
关键词
D O I
10.1074/jbc.274.13.9006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Myocardial hypertrophy is associated with increased basal glucose metabolism. Basal glucose transport into cardiac myocytes is mediated by the GLUT1 isoform of glucose transporters, whereas the GLUT4 isoform is responsible for regulatable glucose transport. Treatment of neonatal cardiac myocytes with the hypertrophic agonist 12-O-tetradecanoylphorbol-13-acetate or phenylephrine increased expression of Glut1 mRNA relative to Glut4 mRNA. To study the transcriptional regulation of GLUT1 expression, myocytes were transfected with luciferase reporter constructs under the control of the Glut1 promoter. Stimulation of the cells with 12-O-tetradecanoylphorbol-13-acetate or phenylephrine induced transcription from the Glut1 promoter, which was inhibited by cotransfection with the mitogen-activated protein kinase phosphatases CL100 and MKP-3. Cotransfection of the myocytes with constitutively active versions of has and MEK1 or an estrogen-inducible version of Raf1 also stimulated transcription from the Glut1 promoter. Hypertrophic induction of the Glut1 promoter was also partially sensitive to inhibition of the phosphatidylinositol 3-kinase pathway and was strongly inhibited by cotransfection with dominant-negative Ras. Thus, Ras activation and pathways downstream of Ras mediate induction of the Glut1 promoter during myocardial hypertrophy.
引用
收藏
页码:9006 / 9012
页数:7
相关论文
共 62 条
[1]   Oxidative stress activates extracellular signal-regulated kinases through Src and ras in cultured cardiac myocytes of neonatal rats [J].
Aikawa, R ;
Komuro, I ;
Yamazaki, T ;
Zou, YZ ;
Kudoh, S ;
Tanaka, M ;
Shiojima, I ;
Hiroi, Y ;
Yazaki, Y .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 100 (07) :1813-1821
[2]   Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy [J].
Akhter, SA ;
Luttrell, LM ;
Rockman, HA ;
Iaccarino, G ;
Lefkowitz, RJ ;
Koch, WJ .
SCIENCE, 1998, 280 (5363) :574-577
[3]   CONTRIBUTION OF OXIDATIVE-METABOLISM AND GLYCOLYSIS TO ATP PRODUCTION IN HYPERTROPHIED HEARTS [J].
ALLARD, MF ;
SCHONEKESS, BO ;
HENNING, SL ;
ENGLISH, DR ;
LOPASCHUK, GD .
AMERICAN JOURNAL OF PHYSIOLOGY, 1994, 267 (02) :H742-H750
[4]  
ALLO SN, 1991, J BIOL CHEM, V266, P22003
[5]   HYPERTROPHIC AGONISTS STIMULATE THE ACTIVITIES OF THE PROTEIN-KINASES C-RAF AND A-RAF IN CULTURED VENTRICULAR MYOCYTES [J].
BOGOYEVITCH, MA ;
MARSHALL, CJ ;
SUGDEN, PH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (44) :26303-26310
[6]  
CHEN SY, 1994, ONCOGENE, V9, P2691
[7]   REGULATION OF CARDIAC GENE-EXPRESSION DURING MYOCARDIAL GROWTH AND HYPERTROPHY - MOLECULAR STUDIES OF AN ADAPTIVE PHYSIOLOGICAL-RESPONSE [J].
CHIEN, KR ;
KNOWLTON, KU ;
ZHU, H ;
CHIEN, S .
FASEB JOURNAL, 1991, 5 (15) :3037-3046
[8]   Regulation of protein kinase C ζ by PI 3-kinase and PDK-1 [J].
Chou, MM ;
Hou, WM ;
Johnson, J ;
Graham, LK ;
Lee, MH ;
Chen, CS ;
Newton, AC ;
Schaffhausen, BS ;
Toker, A .
CURRENT BIOLOGY, 1998, 8 (19) :1069-1077
[9]   Stimulation of the p38 mitogen-activated protein kinase pathway in neonatal rat ventricular myocytes by the G protein-coupled receptor agonists, endothelin-1 and phenylephrine: A role in cardiac myocyte hypertrophy? [J].
Clerk, A ;
Michael, A ;
Sugden, PH .
JOURNAL OF CELL BIOLOGY, 1998, 142 (02) :523-535
[10]   SB-203580 IS A SPECIFIC INHIBITOR OF A MAP KINASE HOMOLOG WHICH IS STIMULATED BY CELLULAR STRESSES AND INTERLEUKIN-1 [J].
CUENDA, A ;
ROUSE, J ;
DOZA, YN ;
MEIER, R ;
COHEN, P ;
GALLAGHER, TF ;
YOUNG, PR ;
LEE, JC .
FEBS LETTERS, 1995, 364 (02) :229-233