Radial distribution functions and densities for the SPC/E, TIP4P and TIP5P models for liquid water and ices Ih, Ic, II, III, IV, V, VI, VII, VIII, IX, XI and XII

被引:100
作者
Vega, C [1 ]
McBride, C [1 ]
Sanz, E [1 ]
Abascal, JLF [1 ]
机构
[1] Univ Complutense Madrid, Fac Ciencias Quim, Dept Quim Fis, E-28040 Madrid, Spain
关键词
MOLECULAR-DYNAMICS SIMULATIONS; INTERMOLECULAR POTENTIAL MODEL; SOLID-FLUID EQUILIBRIUM; PHASE-DIAGRAM; MONTE-CARLO; FREE-ENERGY; CRYSTAL-STRUCTURE; HEXAGONAL ICE; TEMPERATURE; COEXISTENCE;
D O I
10.1039/b418934e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Monte Carlo computer simulation studies have been undertaken for virtually all of the ice phases as well as for liquid water for three of the most popular model potentials; namely SPC/E, TIP4P and TIP5P. Densities have been calculated for specific thermodynamic state points and compared to experimental results. The SPC/E and TIP4P models overestimate the solid densities by about 2%. The TIP5P model overestimates the solid densities by about 5 - 10%. The structural pair correlation functions between oxygen - oxygen, hydrogen - hydrogen and oxygen - hydrogen atoms were also obtained from the simulations. ( These are available as ESI dagger). It has been found that SPC/E and TIP4P structural predictions are rather similar, with the only exception of ice II for which differences are visible between these two models. Predictions from the TIP5P are clearly different from those of the other models, especially for ices I-h and II. For the higher density ices structural differences between the models are rather small. Experimental data would be highly desirable to test the structural predictions of the different models of water. This is especially true for ice II. We have also found that the oxygen - oxygen correlation function of high density amorphous (HDA) water presents the same broad features as those exhibited by ice XII.
引用
收藏
页码:1450 / 1456
页数:7
相关论文
共 84 条
[1]   Determination of solvation free energies by adaptive expanded ensemble molecular dynamics [J].
Åberg, KM ;
Lyubartsev, AP ;
Jacobsson, SP ;
Laaksonen, A .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (08) :3770-3776
[2]   THERMODYNAMIC AND STRUCTURAL-PROPERTIES OF MODEL SYSTEMS AT SOLID-FLUID COEXISTENCE .2. MELTING AND SUBLIMATION OF THE LENNARD-JONES SYSTEM [J].
AGRAWAL, R ;
KOFKE, DA .
MOLECULAR PHYSICS, 1995, 85 (01) :43-59
[3]   PHASE TRANSITION FOR A HARD SPHERE SYSTEM [J].
ALDER, BJ ;
WAINWRIGHT, TE .
JOURNAL OF CHEMICAL PHYSICS, 1957, 27 (05) :1208-1209
[4]   STUDIES IN MOLECULAR DYNAMICS .1. GENERAL METHOD [J].
ALDER, BJ ;
WAINWRIGHT, TE .
JOURNAL OF CHEMICAL PHYSICS, 1959, 31 (02) :459-466
[5]  
Allen M.P., 2017, COMPUTER SIMULATION, DOI DOI 10.1093/OSO/9780198803195.001.0001
[6]   Effects of the Ewald sum on the free energy of the extended simple point charge model for water [J].
Arbuckle, BW ;
Clancy, P .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (12) :5090-5098
[7]   A molecular dynamics study of ices III and V using TIP4P and TIP5P water models [J].
Ayala, RB ;
Tchijov, V .
CANADIAN JOURNAL OF PHYSICS, 2003, 81 (1-2) :11-16
[8]   PHASE-EQUILIBRIA IN EXTENDED SIMPLE POINT-CHARGE ICE-WATER SYSTEMS [J].
BAEZ, LA ;
CLANCY, P .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (22) :9744-9755
[9]   Structure of water; A Monte Carlo calculation [J].
Barker, J. A. ;
Watts, R. O. .
CHEMICAL PHYSICS LETTERS, 1969, 3 (03) :144-145
[10]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690