Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables

被引:69
作者
Ai, Chunrong
Chen, Xiaohong
机构
[1] NYU, Dept Econ, New York, NY 10003 USA
[2] Univ Florida, Dept Econ, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
misspecification; Sieve minimum distance; Conditional moment models with different conditioning sets; Nonparametric endogeneity; Weighted average derivatives;
D O I
10.1016/j.jeconom.2007.01.013
中图分类号
F [经济];
学科分类号
02 ;
摘要
Newey and Powell [2003. Instrumental variable estimation of nonparametric models. Econometrica 71, 1565-1578] and Ai and Chen [2003. Efficient estimation of conditional moment restrictions models containing unknown functions. Econometrica 71, 1795-1843] propose sieve minimum distance (SMD) estimation of both finite dimensional parameter (theta) and infinite dimensional parameter (h) that are identified through a conditional moment restriction model, in which h could depend on endogenous variables. This paper modifies their SMD procedure to allow for different conditioning variables to be used in different equations, and derives the asymptotic properties when the model may be misspecified. Under low-level sufficient conditions, we show that: (i) the modified SMD estimators of both theta and h converge to some pseudo-true values in probability; (ii) the SMD estimators of smooth functionals, including the theta estimator and the average derivative estimator, are asymptotically normally distributed; and (iii) the estimators for the asymptotic covariances of the SMD estimators of smooth functionals are consistent and easy to compute. These results allow for asymptotically valid tests of various hypotheses on the smooth functionals regardless of whether the semiparametric model is correctly specified or not. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:5 / 43
页数:39
相关论文
共 36 条
[1]  
AI C, 2005, UNPUB EFFICIENT ESTI
[2]   Efficient estimation of models with conditional moment restrictions containing unknown functions [J].
Ai, CR ;
Chen, XH .
ECONOMETRICA, 2003, 71 (06) :1795-1843
[3]   ASYMPTOTICS FOR SEMIPARAMETRIC ECONOMETRIC-MODELS VIA STOCHASTIC EQUICONTINUITY [J].
ANDREWS, DWK .
ECONOMETRICA, 1994, 62 (01) :43-72
[4]  
[Anonymous], J ECONOMETRICS
[5]  
BALTAGI B, 2003, ECON LETT, V76, P1
[6]  
BHATTACHARYA D, 2005, UNPUB INFERENCE PANE
[7]  
CHEN X, 2005, HDB ECONOMETRICS, V6
[8]   Sieve extremum estimates for weakly dependent data [J].
Chen, XH ;
Shen, XT .
ECONOMETRICA, 1998, 66 (02) :289-314
[9]   Estimation of semiparametric models when the criterion function is not smooth [J].
Chen, XH ;
Linton, O ;
Van Keilegom, I .
ECONOMETRICA, 2003, 71 (05) :1591-1608
[10]   Improved rates and asymptotic normality for nonparametric neural network estimators [J].
Chen, XH ;
White, H .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (02) :682-691