The glucosinolate-myrosinase system in an ecological and evolutionary context

被引:193
作者
Kliebenstein, DJ
Kroymann, J [1 ]
Mitchell-Olds, T
机构
[1] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA
[2] Max Planck Inst Chem Ecol, Dept Gent & Evolut, D-07745 Jena, Germany
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.pbi.2005.03.002
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Functional analysis of natural variation in the model species Arabidopsis thaliana has enabled the cloning of many glucosinolate biosynthesis and hydrolysis genes. Variation in these genes is central to understanding the ecological role of the glucosinolate-myrosinase defense system, and allows us to dissect the evolutionary and ecological forces that shape polymorphism at underlying loci. These same genes are also variable in other crucifer species, suggesting the presence of recurring selection, possibly mediated by insects. By utilizing the genomic tools available in A. thaliana to investigate these loci fully, it might be possible to generate detailed evolutionary or ecological models to apply to other species.
引用
收藏
页码:264 / 271
页数:8
相关论文
共 59 条
[1]   A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae [J].
Agrawal, AA ;
Kurashige, NS .
JOURNAL OF CHEMICAL ECOLOGY, 2003, 29 (06) :1403-1415
[2]   The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling [J].
Armengaud, P ;
Breitling, R ;
Amtmann, A .
PLANT PHYSIOLOGY, 2004, 136 (01) :2556-2576
[3]   CYP83B1, a cytochrome P450 at the metabolic branch paint in auxin and indole glucosinolate biosynthesis in Arabidopsis [J].
Bak, S ;
Tax, FE ;
Feldmann, KA ;
Galbraith, DW ;
Feyereisen, R .
PLANT CELL, 2001, 13 (01) :101-111
[4]   Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogen Erwinia carotovora [J].
Brader, G ;
Tas, É ;
Palva, ET .
PLANT PHYSIOLOGY, 2001, 126 (02) :849-860
[5]   Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana [J].
Brown, PD ;
Tokuhisa, JG ;
Reichelt, M ;
Gershenzon, J .
PHYTOCHEMISTRY, 2003, 62 (03) :471-481
[6]   COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis [J].
Capella, AN ;
Menossi, M ;
Arruda, P ;
Benedetti, CE .
PLANTA, 2001, 213 (05) :691-699
[7]   CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis [J].
Chen, SX ;
Glawischnig, E ;
Jorgensen, K ;
Naur, P ;
Jorgensen, B ;
Olsen, CE ;
Hansen, CH ;
Rasmussen, H ;
Pickett, JA ;
Halkier, BA .
PLANT JOURNAL, 2003, 33 (05) :923-937
[8]   Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to Spodoptera exigua [J].
Cipollini, D ;
Enright, S ;
Traw, MB ;
Bergelson, J .
MOLECULAR ECOLOGY, 2004, 13 (06) :1643-1653
[9]   Complex formation of myrosinase isoenzymes in oilseed rape seeds are dependent on the presence of myrosinase-binding proteins [J].
Eriksson, S ;
Andréasson, E ;
Ekbom, B ;
Granér, G ;
Pontoppidan, B ;
Taipalensuu, J ;
Zhang, JM ;
Rask, L ;
Meijer, J .
PLANT PHYSIOLOGY, 2002, 129 (04) :1592-1599
[10]   Glucosinolate and amino acid biosynthesis in Arabidopsis [J].
Field, B ;
Cardon, G ;
Traka, M ;
Botterman, J ;
Vancanneyt, G ;
Mithen, R .
PLANT PHYSIOLOGY, 2004, 135 (02) :828-839