A numerical assessment of the durability of thermal barrier systems that fail by ratcheting of the thermally grown oxide

被引:111
作者
Xu, T [1 ]
He, MY [1 ]
Evans, AG [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
关键词
thermal barrier systems; computer simulation; crack; layered materials; thermal fatigue; electron beam physical vapor deposition coatings;
D O I
10.1016/S1359-6454(03)00194-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Interactions between cracks induced in thermal barrier coatings (TBCs) upon thermal cycling have been calculated. The interactions are motivated by displacement instability in the thermally grown oxide (TGO). The results indicate that the energy release rate G cycles as the temperature changes, with the largest value arising at ambient temperature. It increases on a cycle-by-cycle basis. Cracks that converge from neighboring imperfections exhibit a minimum energy release rate prior to coalescence. Equating this minimum to the toughness of the TBC provides a criterion for coalescence and failure. Imposing this criterion allows the change in crack length upon cycling and the number of cycles to failure to be ascertained. This simulation capability is used to explore various influences on durability. The roles of the heating/cooling rate and the high temperature hold time are assessed, demonstrating substantial variation in durability, especially when the bond coat is relatively soft. The trends from these simulations are compared with experimental results for furnace cycle and burner rig tests. Improvements in the durability upon increasing the high temperature strength of the bond coat and upon decreasing the growth stress in the TGO are established, as well as the influence of the geometric imperfections in the bond coat. Some effects of the thermal expansion misfit between the bond coat and the substrate are explored. (C) 2003 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved..
引用
收藏
页码:3807 / 3820
页数:14
相关论文
共 34 条
[1]   Mechanics of damage initiation and growth in a TBC/superalloy system [J].
Ali, MY ;
Nusier, SQ ;
Newaz, GM .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2001, 38 (19) :3329-3340
[2]   Stress and shape evolution of irregularities in oxide films on elastic-plastic substrates due to thermal cycling and film growth [J].
Ambrico, JM ;
Begley, MR ;
Jordan, EH .
ACTA MATERIALIA, 2001, 49 (09) :1577-1588
[3]   Analysis of a wedge impression test for measuring the interface toughness between films/coatings and ductile substrates [J].
Begley, MR ;
Mumm, DR ;
Evans, AG ;
Hutchinson, JW .
ACTA MATERIALIA, 2000, 48 (12) :3211-3220
[4]   A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system. Part I: Model formulation [J].
Busso, EP ;
Lin, J ;
Sakurai, S ;
Nakayama, M .
ACTA MATERIALIA, 2001, 49 (09) :1515-1528
[5]   A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system. Part II: Life prediction model [J].
Busso, EP ;
Lin, J ;
Sakurai, S .
ACTA MATERIALIA, 2001, 49 (09) :1529-1536
[6]  
CHEN X, IN PRESS ACTA MAT
[7]  
CLARKE DA, COMMUNICATION
[8]   CYCLIC FATIGUE-CRACK PROPAGATION IN MAGNESIA-PARTIALLY-STABILIZED ZIRCONIA CERAMICS [J].
DAUSKARDT, RH ;
MARSHALL, DB ;
RITCHIE, RO .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1990, 73 (04) :893-903
[9]   Mechanisms controlling the durability of thermal barrier coatings [J].
Evans, AG ;
Mumm, DR ;
Hutchinson, JW ;
Meier, GH ;
Pettit, FS .
PROGRESS IN MATERIALS SCIENCE, 2001, 46 (05) :505-553
[10]   PERSPECTIVE ON THE DEVELOPMENT OF HIGH-TOUGHNESS CERAMICS [J].
EVANS, AG .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1990, 73 (02) :187-206