Greedy algorithm and m-term trigonometric approximation

被引:65
作者
Temlyakov, VN [1 ]
机构
[1] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
关键词
nonlinear approximation; asymptotic estimates; Greedy Algorithm; Besov classes; existence theorem;
D O I
10.1007/s003659900090
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the following nonlinear method of approximation by trigonometric polynomials in this paper. For a periodic function f we take as an approximant a trigonometric polynomial of the form G(m) (f) := Sigma(k epsilon Lambda) (f) over cap(k)e(i(k,x)), where Lambda subset of Z(d) is a set of cardinality m containing the indices of the nl biggest (in absolute value) Fourier coefficients (f) over cap(k) of function f. We compare the efficiency of this method with the best m-term trigonometric approximation both for individual functions and for some function classes. It turns out that the operator G(m) provides the optimal (in the sense of order) error of m-term trigonometric approximation in the L-p-norm for many classes.
引用
收藏
页码:569 / 587
页数:19
相关论文
共 7 条
  • [1] [Anonymous], 1969, APPROXIMATION FUNCTI
  • [2] [Anonymous], 1959, TRIGONOMETRIC SERIES
  • [3] BELINSKII ES, 1988, MATH USSR SB, V60, P19
  • [4] Some remarks on greedy algorithms
    DeVore, RA
    Temlyakov, VN
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 5 (2-3) : 173 - 187
  • [5] DeVore RA., 1995, J FOURIER ANAL APPL, V2, P29, DOI [DOI 10.1007/S00041-001-4021-8, 10.1007/s00041-001-4021-8]
  • [6] TEMLYAKOV VN, 1993, APPROXIMATION PERIOD
  • [7] ZYGMUND A, 1959, TRIGONOMETRIC SERIES, V2