Growth of Polyaniline on Hollow Carbon Spheres for Enhancing Electrocapacitance

被引:196
作者
Lei, Zhibin [1 ]
Chen, Zhongwei [1 ]
Zhao, X. S. [1 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117576, Singapore
关键词
MESOPOROUS CARBON; HIGH CAPACITANCE; ELECTROCHEMICAL PERFORMANCE; MACROPOROUS CARBON; NANOWIRE ARRAYS; SUPERCAPACITORS; SURFACE; COMPOSITES; ELECTRODE; FABRICATION;
D O I
10.1021/jp1084026
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hollow carbon spheres (HCS) with specific surface areas as high as 2239 m(2)/g were prepared by chemical vapor deposition with ferrocene as the carbon precursor and colloidal silica spheres as the template. Chemical oxidative polymerization of aniline in the presence of the HCS yielded composite materials with a layer of polyaniline (PAN!) deposited on the external surface of the HCS. The electrocapacitive properties of the composite materials (HCS-PANI) with different PANI contents were evaluated using cyclic voltammetry, galvanostatic charge discharge, and electrochemical impedance spectroscopy techniques. Results showed that the specific capacitances of the HCS before and after PANI coating were, respectively, 268 and 525 F/g in an aqueous H2SO4 electrolyte, which is almost doubly enhanced. A maximum energy density of 17.2 Wh/kg was achieved for the HCS-PANI electrode at a discharge current density of 0.1 A/g. However, the energy density of the HCS-PANI electrodes with higher PANI contents (>65 wt %) declined quickly as the power density increased. An asymmetric supercapacitor using the composite material as the positive electrode and HCS as the negative electrode showed good electrochemical stability, with 73% of the capacitance, 75% of the energy density, and almost 100% of the power density being retained after 1000 cycles at a current density of 1.0 A/g.
引用
收藏
页码:19867 / 19874
页数:8
相关论文
共 49 条
[1]  
Buchel G, 1998, ADV MATER, V10, P1036, DOI 10.1002/(SICI)1521-4095(199809)10:13<1036::AID-ADMA1036>3.0.CO
[2]  
2-Z
[3]   Design and Synthesis of Hierarchical Nanowire Composites for Electrochemical Energy Storage [J].
Chen, Zheng ;
Qin, Yaochun ;
Weng, Ding ;
Xiao, Qiangfeng ;
Peng, Yiting ;
Wang, Xiaolei ;
Li, Hexing ;
Wei, Fei ;
Lu, Yunfeng .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (21) :3420-3426
[4]   Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties [J].
Chiou, Nan-Rong ;
Lui, Chunmeng ;
Guan, Jingjiao ;
Lee, L. James ;
Epstein, Arthur J. .
NATURE NANOTECHNOLOGY, 2007, 2 (06) :354-357
[5]   High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support [J].
Fan, Li-Zhen ;
Hu, Yong-Sheng ;
Maier, Joachim ;
Adelhelm, Philipp ;
Smarsly, Bernd ;
Antonietti, Markus .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (16) :3083-3087
[6]   Carbon materials for supercapacitor application [J].
Frackowiak, Elzbieta .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (15) :1774-1785
[7]   Templated mesoporous carbons for supercapacitor application [J].
Fuertes, AB ;
Lota, G ;
Centeno, TA ;
Frackowiak, E .
ELECTROCHIMICA ACTA, 2005, 50 (14) :2799-2805
[8]   Hollow mesoporous carbon spheres-an excellent bilirubin adsorbent [J].
Guo, Limin ;
Zhang, Lingxia ;
Zhang, Jiamin ;
Zhou, Jian ;
He, Qianjun ;
Zeng, Shaozhong ;
Cui, Xiangzhi ;
Shi, Jianlin .
CHEMICAL COMMUNICATIONS, 2009, (40) :6071-6073
[9]   Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors [J].
Hu, Chi-Chang ;
Chang, Kuo-Hsin ;
Lin, Ming-Champ ;
Wu, Yung-Tai .
NANO LETTERS, 2006, 6 (12) :2690-2695
[10]   Electrochemical performance of nitrogen-enriched carbons in aqueous and non-aqueous supercapacitors [J].
Hulicova, D ;
Kodama, M ;
Hatori, H .
CHEMISTRY OF MATERIALS, 2006, 18 (09) :2318-2326