On the problem of algebraic completeness for the invariants of the Riemann tensor: I

被引:19
作者
Zakhary, E [1 ]
Carminati, J [1 ]
机构
[1] Deakin Univ, Sch Comp & Math, Waurn Ponds, Vic 3217, Australia
关键词
D O I
10.1063/1.1348027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a new determining set, CZ, of Riemann invariants which possesses the minimum degree property. From an analysis on the possible independence of CZ, we are led to the division of all space-times into two distinct, invariantly characterized, classes: a general class M-G(+), and a special, singular class M-S. For each class, we provide an independent set of invariants (I(G)(+)subset of CZ and I(S)subset of CZ, respectively) which, with the results of a sequel paper, will be shown to be algebraically complete. (C) 2001 American Institute of Physics.
引用
收藏
页码:1474 / 1485
页数:12
相关论文
共 21 条
[1]  
[Anonymous], EXACT SOLUTIONS EINS
[2]   The algebra of two symmetric matrices: Proving completeness and deriving syzygies for a set of invariants of the Riemann tensor [J].
Bonanos, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (04) :2064-2073
[3]   ALGEBRAIC INVARIANTS OF THE RIEMANN TENSOR IN A 4-DIMENSIONAL LORENTZIAN SPACE [J].
CARMINATI, J ;
MCLENAGHAN, RG .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (11) :3135-3140
[4]  
CARMINATI J, UNPUB
[5]   THE AUTOMATIC CONVERSION OF SPINOR EQUATIONS TO DYAD FORM IN MAPLE [J].
CZAPOR, SR ;
MCLENAGHAN, RG ;
CARMINATI, J .
GENERAL RELATIVITY AND GRAVITATION, 1992, 24 (09) :911-928
[6]  
EHLERS J, GRAVITATION INTRO CU
[7]  
Geheniau J, 1956, B ACAD ROY BELG S, V42, P114
[8]  
GEHENIAU J, 1956, B ACAD R BELG CL SCI, V42, P525
[9]  
Geheniau J., 1956, Helv. Phys. Acta Suppl, V4, P101
[10]  
GREENBERG PJ, 1972, STUD APPL MATH, V51, P277