Adeno-associated virus vectors for short hairpin RNA expression

被引:54
作者
Grimm, D
Pandey, K
Kay, MA
机构
来源
RNA INTERFERENCE | 2005年 / 392卷
关键词
D O I
10.1016/S0076-6879(04)92023-X
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Five recent publications have documented the successful development and use of gene transfer vectors based on adeno-associated virus (AAV) for expressing short hairpin RNA (shRNA). In cultured mammalian cells and in whole animals, infection with these vectors was shown to result in specific, efficient, and stable knockdown of various targeted endo- or exogenous genes. Here we review this exciting approach, to trigger RNA interference in vitro and in vivo by shRNA expressed from AAV vectors, and describe the state-of-the-art technology for vector particle generation. In particular, we present a set of novel AAV vector plasmids that were specifically designed for the easy and rapid cloning of shRNA expression cassettes into AAV. The plasmids contain alternative RNA polymerase III promoters (U6, H1, or 7SK) together with a respective terminator sequence, as well as stuffer DNA to guarantee an optimal vector size for efficient packaging into AAV capsids. To provide maximum versatility and user-friendliness, the constructs were also engineered to contain a set of unique restriction enzyme recognition sites, allowing the simple and straightforward replacement of the shRNA cassette or other vector components with customized sequences. Our novel vector plasmids complement existing AAV vector technology and should help further establish AAV as a most promising alternative to using adeno- or retro-/lentiviral vectors as shRNA delivery vehicles.
引用
收藏
页码:381 / 405
页数:25
相关论文
共 45 条
[1]   A large-scale RNAi screen in human cells identifies new components of the p53 pathway [J].
Berns, K ;
Hijmans, EM ;
Mullenders, J ;
Brummelkamp, TR ;
Velds, A ;
Heimerikx, M ;
Kerkhoven, RM ;
Madiredjo, M ;
Nijkamp, W ;
Weigelt, B ;
Agami, R ;
Ge, W ;
Cavet, G ;
Linsley, PS ;
Beijersbergen, RL ;
Bernards, R .
NATURE, 2004, 428 (6981) :431-437
[2]   THE CRYPTIC LIFE-STYLE OF ADENOASSOCIATED VIRUS [J].
BERNS, KI ;
LINDEN, RM .
BIOESSAYS, 1995, 17 (03) :237-245
[3]   Efficient gene transfer of HIV-1-specific short hairpin RNA into human lymphocytic cells using recombinant adeno-associated virus vectors [J].
Boden, D ;
Pusch, O ;
Lee, F ;
Tucker, L ;
Ramratnam, B .
MOLECULAR THERAPY, 2004, 9 (03) :396-402
[4]   Sfold web server for statistical folding and rational design of nucleic acids [J].
Ding, Y ;
Chan, CY ;
Lawrence, CE .
NUCLEIC ACIDS RESEARCH, 2004, 32 :W135-W141
[5]   siRNAs can function as miRNAs [J].
Doench, JG ;
Petersen, CP ;
Sharp, PA .
GENES & DEVELOPMENT, 2003, 17 (04) :438-442
[6]   Quantitative analysis of the packaging capacity of recombinant adeno-associated virus [J].
Dong, JY ;
Fan, PD ;
Frizzell, RA .
HUMAN GENE THERAPY, 1996, 7 (17) :2101-2112
[7]   Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J].
Elbashir, SM ;
Harborth, J ;
Lendeckel, W ;
Yalcin, A ;
Weber, K ;
Tuschl, T .
NATURE, 2001, 411 (6836) :494-498
[8]  
Erles K, 1999, J MED VIROL, V59, P406, DOI 10.1002/(SICI)1096-9071(199911)59:3&lt
[9]  
406::AID-JMV22&gt
[10]  
3.0.CO