Immobilization-free direct electrochemical detection for DNA specific sequences based on electrochemically converted gold nanoparticles/graphene composite film

被引:113
作者
Du, Meng [1 ]
Yang, Tao [1 ]
Jiao, Kui [1 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Chem & Mol Engn, State Key Lab Base Ecochem Engn, Qingdao 266042, Peoples R China
基金
中国国家自然科学基金;
关键词
REDUCED GRAPHENE OXIDE; WALLED CARBON NANOTUBES; GRAPHITE OXIDE; ELECTRODE; NANOSHEETS; PLATFORM; HYBRIDIZATION; GUANINE; SENSOR; PERFORMANCE;
D O I
10.1039/c0jm01549k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A direct electrochemical DNA sensor was constructed based on gold nanoparticles/graphene film. A precursor graphene film was fabricated on glassy carbon electrode (GCE) using both electrochemically reduced graphene oxide (ERGNO) and chemically reduced graphene oxide (CRGNO). The electrochemical approach was green and fast, and unlike chemical reduction, does not result in contamination of the reduced material, and at highly negative potential could reduce the oxygen functionalities (-OH, C-O-C and -COOH) of the graphene oxide more efficiently. ERGNO exhibited better electrochemical and electrocatalytic performances than CRGNO. Gold nanoparticles (AuNPs) were electrodeposited on the ERGNO/GCE to amplify the electrochemical signals. The resulting AuNPs/ERGNO composite film was characterized by scanning electron microscopy, energy dispersive spectroscopy and Raman spectroscopy. The electrochemical responses of guanine (G), adenine (A), thymine (T) and cytosine (C) were investigated at AuNPs/ERGNO/GCE, which showed more favorable electron transfer kinetics than at ERGNO/GCE, demonstrating the significantly synergistic electrocatalytic effect of ERGNO and AuNPs. Synthetic sequence-specific DNA oligonucleotides was successfully detected and the established immobilization-free biosensor had the ability to discriminate single- or double-base mismatched DNA.
引用
收藏
页码:9253 / 9260
页数:8
相关论文
共 49 条
[1]   Metal decorated graphene nanosheets as immobilization matrix for amperometric glucose biosensor [J].
Baby, Tessy Theres ;
Aravind, S. S. Jyothirmayee ;
Arockiadoss, T. ;
Rakhi, R. B. ;
Ramaprabhu, S. .
SENSORS AND ACTUATORS B-CHEMICAL, 2010, 145 (01) :71-77
[2]   Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites [J].
Banks, CE ;
Davies, TJ ;
Wildgoose, GG ;
Compton, RG .
CHEMICAL COMMUNICATIONS, 2005, (07) :829-841
[3]   Graphene supported electrocatalysts for methanol oxidation [J].
Bong, Sungyool ;
Kim, Yang-Rae ;
Kim, In ;
Woo, Seunghee ;
Uhm, Sunghyun ;
Lee, Jaeyoung ;
Kim, Hasuck .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (01) :129-131
[4]   Optimization of a Reusable, DNA Pseudoknot-Based Electrochemical Sensor for Sequence-Specific DNA Detection in Blood Serum [J].
Cash, Kevin J. ;
Heeger, Alan J. ;
Plaxco, Kevin W. ;
Xiao, Yi .
ANALYTICAL CHEMISTRY, 2009, 81 (02) :656-661
[5]   Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation [J].
Dong, Lifeng ;
Gari, Raghavendar Reddy Sanganna ;
Li, Zhou ;
Craig, Michael M. ;
Hou, Shifeng .
CARBON, 2010, 48 (03) :781-787
[6]   Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation [J].
Fan, Xiaobin ;
Peng, Wenchao ;
Li, Yang ;
Li, Xianyu ;
Wang, Shulan ;
Zhang, Guoliang ;
Zhang, Fengbao .
ADVANCED MATERIALS, 2008, 20 (23) :4490-4493
[7]   A Green Approach to the Synthesis of Graphene Nanosheets [J].
Guo, Hui-Lin ;
Wang, Xian-Fei ;
Qian, Qing-Yun ;
Wang, Feng-Bin ;
Xia, Xing-Hua .
ACS NANO, 2009, 3 (09) :2653-2659
[8]   Label-free sequence-specific DNA sensing using copper-enhanced anodic stripping of purine bases at boron-doped diamond electrodes [J].
Hason, Stanislav ;
Pivonkova, Hana ;
Vetterl, Vladimir ;
Fojta, Miroslav .
ANALYTICAL CHEMISTRY, 2008, 80 (07) :2391-2399
[9]   High-yield production of graphene by liquid-phase exfoliation of graphite [J].
Hernandez, Yenny ;
Nicolosi, Valeria ;
Lotya, Mustafa ;
Blighe, Fiona M. ;
Sun, Zhenyu ;
De, Sukanta ;
McGovern, I. T. ;
Holland, Brendan ;
Byrne, Michele ;
Gun'ko, Yurii K. ;
Boland, John J. ;
Niraj, Peter ;
Duesberg, Georg ;
Krishnamurthy, Satheesh ;
Goodhue, Robbie ;
Hutchison, John ;
Scardaci, Vittorio ;
Ferrari, Andrea C. ;
Coleman, Jonathan N. .
NATURE NANOTECHNOLOGY, 2008, 3 (09) :563-568
[10]   Comparing the Properties of Electrochemical-Based DNA Sensors Employing Different Redox Tags [J].
Kang, Di ;
Zuo, Xiaolei ;
Yang, Renqiang ;
Xia, Fan ;
Plaxco, Kevin W. ;
White, Ryan J. .
ANALYTICAL CHEMISTRY, 2009, 81 (21) :9109-9113