Facile one-pot synthesis of low cost MnO2 nanosheet/Super P Li composites with high oxygen reduction reaction activity for Zn-air batteries

被引:99
作者
Huang, Zongxiong [1 ,2 ]
Li, Guanzhou [1 ,2 ]
Huang, Youlun [1 ,2 ]
Gu, Xiefang [1 ,2 ]
Wang, Naiguang [1 ,2 ]
Liu, Jianping [1 ,2 ]
Li, Oi Lun [3 ]
Shao, Huaiyu [4 ]
Yang, Yong [5 ]
Shi, Zhicong [1 ,2 ]
机构
[1] Guangdong Univ Technol, Sch Mat & Energy, Smart Energy Res Ctr, Guangzhou 510000, Peoples R China
[2] Guangdong Engn Technol Res Ctr New Energy Mat & D, Guangzhou 510000, Peoples R China
[3] Pusan Natl Univ, Sch Mat Sci & Engn, Busan 46241, South Korea
[4] Univ Macau, IAPME, Minist Educ, Joint Key Lab, Ave Univ, Taipa, Macao, Peoples R China
[5] Xiamen Univ, Dept Chem, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Manganese dioxide; Oxygen reduction reaction; Electrocatalyst; Super P Li; Zn-air battery; CHARGE STORAGE MECHANISM; IN-SITU SYNTHESIS; BIFUNCTIONAL CATALYSTS; MANGANESE OXIDES; RAMAN-SPECTRA; POROUS CARBON; NANOSTRUCTURES; BIRNESSITE; NANOTUBES; CATHODE;
D O I
10.1016/j.jpowsour.2019.227385
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Facile green and scalable synthesis of low-cost nonprecious metal electrocatalysts which favor a four-electron pathway for the oxygen reduction reaction (ORR) are in great need for high-performance metal-air batteries. Herein, an ultrasonication-assisted synthesis method of preparing MnO2 nanosheets anchored on carbon black (MnO2/Super P Li) ORR catalyst is proposed. Three kinds of MnO2 nanostructures can be controlled and conformably deposited on Super P Li backbone. The MnO2/Super P Li composites facilitates a four-electron ORR process and demonstrates superior stability than the benchmark catalyst Pt/C in alkaline solutions. Moreover, the Zn-air battery using one of the MnO2/Super P Li catalysts displays a specific capacity of 705 mA h(-1) and the voltage platform is almost unchanged after discharge for 180 h. The high ORR activity of the hybrid catalyst can be attributed to the MnO2 nanosheets uniformly grown on the Super P Li three dimensional (3D) framework and the appropriate Mn(III)/Mn(IV) of the MnO2/Super P Li composite which can magically catalyze the reduction of hydrogen peroxide. Due to the high ORR activity and the superior stability, low cost MnO2/Super P Li catalysts lends itself well to potential applications in renewable energy conversion devices.
引用
收藏
页数:8
相关论文
共 46 条
[1]   Carbon-supported MnO2 nanoflowers: Introducing oxygen vacancies for optimized volcano-type electrocatalytic activities towards H2O2 generation [J].
Aveiro, Luci R. ;
da Silva, Anderson G. M. ;
Antonin, Vanessa S. ;
Candido, Eduardo G. ;
Parreira, Luanna S. ;
Geonmonond, Rafael S. ;
de Freitas, Isabel C. ;
Lanza, Marcos R. V. ;
Camargo, Pedro H. C. ;
Santos, Mauro C. .
ELECTROCHIMICA ACTA, 2018, 268 :101-110
[2]   XPS study of reductive dissolution of birnessite by oxalate: Rates and mechanistic aspects of dissolution and redox processes [J].
Banerjee, D ;
Nesbitt, HW .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1999, 63 (19-20) :3025-3038
[3]  
Bantignies J.L., 2006, PHYS REV B, V74, P3840
[4]   Facile Controlled Growth of Podetium-Like MnO2 Crystals and the Catalytic Effect of MnO2/N-Doped Graphene on the Oxygen Reduction Reaction [J].
Chai, Hui ;
Wei, Maoping ;
Su, Ying ;
Wang, Yucheng ;
Jia, Dianzeng ;
Sun, Zhipeng ;
Zhou, Wanyong .
EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2018, (11) :1315-1321
[5]   Probing the Charge Storage Mechanism of a Pseudocapacitive MnO2 Electrode Using in Operando Raman Spectroscopy [J].
Chen, Dongchang ;
Ding, Dong ;
Li, Xiaxi ;
Waller, Gordon Henry ;
Xiong, Xunhui ;
El-Sayed, Mostafa A. ;
Liu, Meilin .
CHEMISTRY OF MATERIALS, 2015, 27 (19) :6608-6619
[6]   MnO2-Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media [J].
Cheng, Fangyi ;
Su, Yi ;
Liang, Jing ;
Tao, Zhanliang ;
Chen, Jun .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :898-905
[7]   Controllable hydrothermal synthesis of manganese dioxide nanostructures: shape evolution, growth mechanism and electrochemical properties [J].
Duan, Xiaochuan ;
Yang, Jiaqin ;
Gao, Haiyan ;
Ma, Jianmin ;
Jiao, Lifang ;
Zheng, Wenjun .
CRYSTENGCOMM, 2012, 14 (12) :4196-4204
[8]   In situ synthesis of mesoporous manganese oxide/sulfur-doped graphitized carbon as a bifunctional catalyst for oxygen evolution/reduction reactions [J].
Gao, Yang ;
Zhao, Hong ;
Chen, Dengjie ;
Chen, Chi ;
Ciucci, Francesco .
CARBON, 2015, 94 :1028-1036
[9]   Uniform MnO2 nanostructures supported on hierarchically porous carbon as efficient electrocatalysts for rechargeable Li-O2 batteries [J].
Han, Xiaopeng ;
Cheng, Fangyi ;
Chen, Chengcheng ;
Hu, Yuxiang ;
Chen, Jun .
NANO RESEARCH, 2015, 8 (01) :156-164
[10]   Tremendous Effect of the Morphology of Birnessite-Type Manganese Oxide Nanostructures on Catalytic Activity [J].
Hou, Jingtao ;
Li, Yuanzhi ;
Mao, Mingyang ;
Ren, Lu ;
Zhao, Xiujian .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (17) :14981-14987