Facile one-pot synthesis of low cost MnO2 nanosheet/Super P Li composites with high oxygen reduction reaction activity for Zn-air batteries

被引:99
作者
Huang, Zongxiong [1 ,2 ]
Li, Guanzhou [1 ,2 ]
Huang, Youlun [1 ,2 ]
Gu, Xiefang [1 ,2 ]
Wang, Naiguang [1 ,2 ]
Liu, Jianping [1 ,2 ]
Li, Oi Lun [3 ]
Shao, Huaiyu [4 ]
Yang, Yong [5 ]
Shi, Zhicong [1 ,2 ]
机构
[1] Guangdong Univ Technol, Sch Mat & Energy, Smart Energy Res Ctr, Guangzhou 510000, Peoples R China
[2] Guangdong Engn Technol Res Ctr New Energy Mat & D, Guangzhou 510000, Peoples R China
[3] Pusan Natl Univ, Sch Mat Sci & Engn, Busan 46241, South Korea
[4] Univ Macau, IAPME, Minist Educ, Joint Key Lab, Ave Univ, Taipa, Macao, Peoples R China
[5] Xiamen Univ, Dept Chem, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Manganese dioxide; Oxygen reduction reaction; Electrocatalyst; Super P Li; Zn-air battery; CHARGE STORAGE MECHANISM; IN-SITU SYNTHESIS; BIFUNCTIONAL CATALYSTS; MANGANESE OXIDES; RAMAN-SPECTRA; POROUS CARBON; NANOSTRUCTURES; BIRNESSITE; NANOTUBES; CATHODE;
D O I
10.1016/j.jpowsour.2019.227385
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Facile green and scalable synthesis of low-cost nonprecious metal electrocatalysts which favor a four-electron pathway for the oxygen reduction reaction (ORR) are in great need for high-performance metal-air batteries. Herein, an ultrasonication-assisted synthesis method of preparing MnO2 nanosheets anchored on carbon black (MnO2/Super P Li) ORR catalyst is proposed. Three kinds of MnO2 nanostructures can be controlled and conformably deposited on Super P Li backbone. The MnO2/Super P Li composites facilitates a four-electron ORR process and demonstrates superior stability than the benchmark catalyst Pt/C in alkaline solutions. Moreover, the Zn-air battery using one of the MnO2/Super P Li catalysts displays a specific capacity of 705 mA h(-1) and the voltage platform is almost unchanged after discharge for 180 h. The high ORR activity of the hybrid catalyst can be attributed to the MnO2 nanosheets uniformly grown on the Super P Li three dimensional (3D) framework and the appropriate Mn(III)/Mn(IV) of the MnO2/Super P Li composite which can magically catalyze the reduction of hydrogen peroxide. Due to the high ORR activity and the superior stability, low cost MnO2/Super P Li catalysts lends itself well to potential applications in renewable energy conversion devices.
引用
收藏
页数:8
相关论文
共 46 条
[31]   Physiochemical Investigation of Shape-Designed MnO2 Nanostructures and Their Influence on Oxygen Reduction Reaction Activity in Alkaline Solution [J].
Selvakumar, Karuppiah ;
Kumar, Sakkarapalayam Murugesan Senthil ;
Thangamuthu, Rangasamy ;
Ganesan, Kruthika ;
Murugan, Palanichamy ;
Rajput, Parasmani ;
Jha, Shambhu Nath ;
Bhattacharyya, Dibyendu .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (12) :6604-6618
[32]   Room Temperature Synthesis Routes to the 2D Nanoplates and 1D Nanowires/Nanorods of Manganese Oxides with Highly Stable Pseudocapacitance Behaviors [J].
Sung, Da-Young ;
Kim, In Young ;
Kim, Tae Woo ;
Song, Min-Sun ;
Hwang, Seong-Ju .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (27) :13171-13179
[33]   Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor [J].
Toupin, M ;
Brousse, T ;
Bélanger, D .
CHEMISTRY OF MATERIALS, 2004, 16 (16) :3184-3190
[34]   Morphological and Crystalline Evolution of Nanostructured MnO2 and Its Application in Lithium-Air Batteries [J].
Truong, Tu T. ;
Liu, Yuzi ;
Ren, Yang ;
Trahey, Lynn ;
Sun, Yugang .
ACS NANO, 2012, 6 (09) :8067-8077
[35]   Nanoscale Carbon Modified α-MnO2 Nanowires: Highly Active and Stable Oxygen Reduction Electrocatalysts with Low Carbon Content [J].
Vigil, Julian A. ;
Lambert, Timothy N. ;
Duay, Jonathon ;
Delker, Collin J. ;
Beechem, Thomas E. ;
Swartzentruber, Brian S. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (02) :2040-2050
[36]  
WANG MY, 2014, SCI REP UK, V4
[37]   Synthesis of hematite (α-Fe2O3) nanorods:: Diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors [J].
Wu, Changzheng ;
Yin, Ping ;
Zhu, Xi ;
OuYang, Chuanzi ;
Xie, Yi .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (36) :17806-17812
[38]   Facile preparation of high-performance MnO2/KB air cathode for Zn-air batteries [J].
Wu, M. C. ;
Zhao, T. S. ;
Jiang, H. R. ;
Wei, L. ;
Zhang, Z. H. .
ELECTROCHIMICA ACTA, 2016, 222 :1438-1444
[39]   Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors [J].
Xia, Hui ;
Wang, Yu ;
Lin, Jianyi ;
Lu, Li .
NANOSCALE RESEARCH LETTERS, 2012, 7 :1-10
[40]   Shape-Controlled Synthesis of MnO2 Nanostructures with Enhanced Electrocatalytic Activity for Oxygen Reduction [J].
Xiao, Wei ;
Wang, Deli ;
Lou, Xiong Wen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (03) :1694-1700