A linear algorithm for the pos/neg-weighted 1-median problem on a cactus

被引:72
作者
Burkard, RE
Krarup, J
机构
[1] Graz Tech Univ, Inst Math, A-8010 Graz, Austria
[2] Univ Copenhagen, Dept Comp Sci, DK-2100 Copenhagen, Denmark
关键词
location problems; 1-median problem; obnoxious facilities;
D O I
10.1007/BF02684332
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The 1-median problem on a network asks for a vertex minimizing the sum of the weighted shortest path distances from itself to all other vertices, each associated with a certain positive weight. We allow for negative weights as well and devise an exact algorithm for the resulting 'pos/neg-weighted' problem defined on a cactus. The algorithm visits every vertex just once and runs thus in linear time.
引用
收藏
页码:193 / 215
页数:23
相关论文
共 9 条
[1]   Dynamic and static algorithms for optimal placement of resources in a tree [J].
Auletta, V ;
Parente, D ;
Persiano, G .
THEORETICAL COMPUTER SCIENCE, 1996, 165 (02) :441-461
[2]   LINEAR-TIME COMPUTATION OF OPTIMAL SUBGRAPHS OF DECOMPOSABLE GRAPHS [J].
BERN, MW ;
LAWLER, EL ;
WONG, AL .
JOURNAL OF ALGORITHMS, 1987, 8 (02) :216-235
[3]   BLOCK-VERTEX DUALITY AND THE ONE-MEDIAN PROBLEM [J].
CHEN, ML ;
FRANCIS, RL ;
LAWRENCE, JF ;
LOWE, TJ ;
TUFEKCI, S .
NETWORKS, 1985, 15 (04) :395-412
[4]  
COURANT R, 1941, MATH
[5]  
Goldman A. J., 1971, Transportation Science, V5, P212, DOI 10.1287/trsc.5.2.212
[6]   OPTIMUM LOCATIONS OF SWITCHING CENTERS + ABSOLUTE CENTERS + MEDIANS OF GRAPH [J].
HAKIMI, SL .
OPERATIONS RESEARCH, 1964, 12 (03) :450-&
[7]  
Hua L, 1962, CHIN MATH, V2, P77
[8]   ALGORITHMIC APPROACH TO NETWORK LOCATION PROBLEMS .2. P-MEDIANS [J].
KARIV, O ;
HAKIMI, SL .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1979, 37 (03) :539-560
[9]  
KRARUP J, IN PRESS LOCATION TH