Programmed cell death during Xenopus development:: A spatio-temporal analysis

被引:208
作者
Hensey, C
Gautier, J
机构
[1] Columbia Univ, Coll Phys & Surg, Dept Genet & Dev, New York, NY 10032 USA
[2] Columbia Univ, Coll Phys & Surg, Dept Dermatol, New York, NY 10032 USA
关键词
Xenopus development; programmed cell death; neurulation; nervous system development; whole-mount TUNEL staining;
D O I
10.1006/dbio.1998.9028
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Programmed cell death (PCD) is an integral part of many developmental processes. In vertebrates little is yet known on the patterns of PCD and its role during the early phases of development, when embryonic tissue layers migrate and pattern formation takes place. We describe the spatio-temporal patterns of cell death during early Xenopus development, from fertilization to the tadpole stage (stage 35/36). Cell death was analyzed by a whole-mount in situ DNA end labeling technique (the TUNEL protocol), as well as by serial sections of paraffin-embedded TUNEL-stained embryos. The first cell death was detected during gastrulation, and as development progressed followed highly dynamic and reproducible patterns, strongly suggesting it is an important component of development at these stages. The detection of PCD during neural induction, neural plate patterning, and later during the development of the nervous system highlights the role of PCD throughout neurogenesis. Additionally, high levels of cell death were detected in the developing tail and sensory organs. This is the first detailed description of PCD throughout early development of a vertebrate, and provides the basis for further studies on its role in the patterning and morphogenesis of the embryo. (C) 1998 Academic Press.
引用
收藏
页码:36 / 48
页数:13
相关论文
共 41 条
[1]   Ionizing radiation induces apoptosis and elevates cyclin A1 Cdk2 activity before but not after the midblastula transition in Xenopus [J].
Anderson, JA ;
Lewellyn, AL ;
Maller, JL .
MOLECULAR BIOLOGY OF THE CELL, 1997, 8 (07) :1195-1206
[2]  
Blaschke AJ, 1996, DEVELOPMENT, V122, P1165
[3]   Programmed cell death in the developing nervous system [J].
Burek, MJ ;
Oppenheim, RW .
BRAIN PATHOLOGY, 1996, 6 (04) :427-446
[4]   STRETCH-INDUCED PROGRAMMED MYOCYTE CELL-DEATH [J].
CHENG, W ;
LI, BS ;
KAJSTURA, J ;
LI, P ;
WOLIN, MS ;
SONNENBLICK, EH ;
HINTZE, TH ;
OLIVETTI, G ;
ANVERSA, P .
JOURNAL OF CLINICAL INVESTIGATION, 1995, 96 (05) :2247-2259
[5]  
COLES HSR, 1993, DEVELOPMENT, V118, P777
[6]   SIGNALS FOR DEATH AND SURVIVAL - A 2-STEP MECHANISM FOR CAVITATION IN THE VERTEBRATE EMBRYO [J].
COUCOUVANIS, E ;
MARTIN, GR .
CELL, 1995, 83 (02) :279-287
[7]   MECHANISMS AND FUNCTIONS OF CELL-DEATH [J].
ELLIS, RE ;
YUAN, JY ;
HORVITZ, HR .
ANNUAL REVIEW OF CELL BIOLOGY, 1991, 7 :663-698
[8]   CELL-CYCLE REMODELING REQUIRES CELL-CELL INTERACTIONS IN DEVELOPING XENOPUS EMBRYOS [J].
FREDERICK, DL ;
ANDREWS, MT .
JOURNAL OF EXPERIMENTAL ZOOLOGY, 1994, 270 (04) :410-416
[9]  
Ganan Y, 1996, DEVELOPMENT, V122, P2349
[10]   IDENTIFICATION OF PROGRAMMED CELL-DEATH INSITU VIA SPECIFIC LABELING OF NUCLEAR-DNA FRAGMENTATION [J].
GAVRIELI, Y ;
SHERMAN, Y ;
BENSASSON, SA .
JOURNAL OF CELL BIOLOGY, 1992, 119 (03) :493-501