Classical improvement of lattice actions and quantum effects: A unified view

被引:8
作者
Rossi, P [1 ]
Vicari, E [1 ]
机构
[1] IST NAZL FIS NUCL, I-56126 PISA, ITALY
关键词
D O I
10.1016/S0370-2693(96)01320-2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The possibility of removing the one-loop perturbative effects of lattice artifacts by a proper choice of the lattice action is explored, and found to depend crucially on the properties of the physical quantity considered. In this respect the finite-space-volume mass gap m(L) is an improved observable. We find an explicit momentum space representation of the one-loop contribution to m(L) for arbitrary lattice actions in the case of two-dimensional O(N) sigma models. We define a ''tree perfect'' Symanzik action and find that it formally removes all one-loop lattice artifacts in m(L). On-shell improved actions do not share this property.
引用
收藏
页码:571 / 576
页数:6
相关论文
共 17 条
[1]   THE VALIDITY OF PERTURBATION-THEORY FOR THE O(N) NONLINEAR SIGMA-MODELS [J].
CLINE, JM .
PHYSICS LETTERS B, 1986, 173 (02) :173-178
[2]   SYMANZIK IMPROVED LAGRANGIAN FOR LATTICE GAUGE-THEORY [J].
CURCI, G ;
MENOTTI, P ;
PAFFUTI, G .
PHYSICS LETTERS B, 1983, 130 (3-4) :205-208
[3]   THE CLASSICALLY PERFECT FIXED-POINT ACTION FOR SU(3) GAUGE-THEORY [J].
DEGRAND, T ;
HASENFRATZ, A ;
HASENFRATZ, P ;
NIEDERMAYER, F .
NUCLEAR PHYSICS B, 1995, 454 (03) :587-614
[4]   THE ABSENCE OF CUTOFF EFFECTS FOR THE FIXED-POINT ACTION IN ONE-LOOP PERTURBATION-THEORY [J].
FARCHIONI, F ;
HASENFRATZ, P ;
NIEDERMAYER, F ;
PAPA, A .
NUCLEAR PHYSICS B, 1995, 454 (03) :638-644
[5]   PERFECT LATTICE ACTION FOR ASYMPTOTICALLY FREE THEORIES [J].
HASENFRATZ, P ;
NIEDERMAYER, F .
NUCLEAR PHYSICS B, 1994, 414 (03) :785-814
[6]   PERTURBATION-THEORY AND ZERO MODES IN O(N) LATTICE SIGMA-MODELS [J].
HASENFRATZ, P .
PHYSICS LETTERS B, 1984, 141 (5-6) :385-388
[7]   A NUMERICAL-METHOD TO COMPUTE THE RUNNING COUPLING IN ASYMPTOTICALLY FREE THEORIES [J].
LUSCHER, M ;
WEISZ, P ;
WOLFF, U .
NUCLEAR PHYSICS B, 1991, 359 (01) :221-243
[9]   ON-SHELL IMPROVED LATTICE GAUGE-THEORIES [J].
LUSCHER, M ;
WEISZ, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 97 (1-2) :59-77
[10]  
LUSCHER M, UNPUB