Epidemiology, evolution, and future of the HIV/AIDS pandemic

被引:19
作者
Levin, BR [1 ]
Bull, JJ
Stewart, FM
机构
[1] Emory Univ, Dept Biol, Atlanta, GA 30322 USA
[2] Univ Texas, Austin, TX 78712 USA
[3] Brown Univ, Providence, RI 02912 USA
关键词
D O I
10.3201/eid0707.017704
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
We used mathematical models to address several questions concerning the epidemiologic and evolutionary future of HIV/AIDS in human populations. Our analysis suggests that 1) when HIV first enters a human population, and for many subsequent years, the epidemic is driven by early transmissions, possibly occurring before donors have seroconverted to HIV-positive status; 2) new HIV infections in a subpopulation (risk group) may decline or level off due to the saturation of the susceptible hosts rather than to evolution of the virus or to the efficacy of intervention, education, and public health measures; 3) evolution in humans for resistance to HIV infection or for the infection to engender a lower death rate will require thousands of years and will be achieved only after vast numbers of persons die of AIDS; 4) evolution is unlikely to increase the virulence of HIV; and 5) if HIV chemotherapy reduces the transmissibility of the virus, treating individual patients can reduce the frequency of HIV infections and AIDS deaths in the general population.
引用
收藏
页码:505 / 511
页数:7
相关论文
共 21 条
[1]   POTENTIAL OF COMMUNITY-WIDE CHEMOTHERAPY OR IMMUNOTHERAPY TO CONTROL THE SPREAD OF HIV-1 [J].
ANDERSON, RM ;
GUPTA, S ;
MAY, RM .
NATURE, 1991, 350 (6316) :356-359
[2]   Simian immunodeficiency virus replicates to high levels in naturally infected African green monkeys without inducing immunologic or neurologic disease [J].
Broussard, SR ;
Staprans, SI ;
White, R ;
Whitehead, EM ;
Feinberg, MB ;
Allan, JS .
JOURNAL OF VIROLOGY, 2001, 75 (05) :2262-2275
[3]  
BULL JJ, 1994, EVOLUTION, V48, P1423, DOI 10.1111/j.1558-5646.1994.tb02185.x
[4]  
Crow JF, 1971, INTRO POPULATION GEN
[5]  
Ewald P W, 1991, Hum Nat, V2, P1, DOI 10.1007/BF02692179
[6]  
FROST SDW, 1994, J ACQ IMMUN DEF SYND, V7, P236
[7]   Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes [J].
Gao, F ;
Bailes, E ;
Robertson, DL ;
Chen, YL ;
Rodenburg, CM ;
Michael, SF ;
Cummins, LB ;
Arthur, LO ;
Peeters, M ;
Shaw, GM ;
Sharp, PM ;
Hahn, BH .
NATURE, 1999, 397 (6718) :436-441
[8]  
HALDANE J. B. S., 1957, JOUR GENETICS, V55, P511, DOI 10.1007/BF02984069
[9]   Distinctive effects of CCR5, CCR2, and SSDF1 genetic polymorphisms in AIDS progression [J].
Hendel, H ;
Hénon, N ;
Lebuanec, H ;
Lachgar, A ;
Poncelet, H ;
Caillat-Zucman, S ;
Winkler, CA ;
Smith, MW ;
Kenefic, L ;
O'Brien, S ;
Lu, W ;
Andrieu, JM ;
Zagury, D ;
Schächter, F ;
Rappaport, J ;
Zagury, JF .
JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES AND HUMAN RETROVIROLOGY, 1998, 19 (04) :381-386
[10]   The role of early HIV infection in the spread of HIV through populations [J].
Koopman, JS ;
Jacquez, JA ;
Welch, GW ;
Simon, CP ;
Foxman, B ;
Pollock, SM ;
BarthJones, D ;
Adams, AL ;
Lange, K .
JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES, 1997, 14 (03) :249-258