Bayesian estimation and testing of structural equation models

被引:192
作者
Scheines, R [1 ]
Hoijtink, H
Boomsma, A
机构
[1] Carnegie Mellon Univ, Dept Philosophy, Pittsburgh, PA 15213 USA
[2] Univ Utrecht, Dept Methodol & Stat, Utrecht, Netherlands
[3] Univ Groningen, Dept Stat Measurement Theory & Informat Technol, Groningen, Netherlands
关键词
Bayesian inference; Gibbs sampler; posterior predictive p-values; structural equation models;
D O I
10.1007/BF02294318
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Gibbs sampler can be used to obtain samples of arbitrary size from the posterior distribution over the parameters of a structural equation model (SEM) given covariance data and a prior distribution over the parameters. Point estimates, standard deviations and interval estimates for the parameters can be computed from these samples. If the prior distribution over the parameters is uninformative, the posterior is proportional to the likelihood, and asymptotically the inferences based on the Gibbs sample are the same as those based on the maximum likelihood solution, for example, output from LISREL or EQS. In small samples, however, the likelihood surface is not Gaussian and in some cases contains local maxima. Nevertheless, the Gibbs sample comes from the correct posterior distribution over the parameters regardless of the sample size and the shape of the likelihood surface. With an informative prior distribution over the parameters, the posterior can be used to make inferences about the parameters of underidentified models, as we illustrate on a simple errors-in-variables model.
引用
收藏
页码:37 / 52
页数:16
相关论文
共 52 条
[1]  
[Anonymous], 1989, STRUCTURAL EQUATIONS
[2]  
BALDWIN BO, 1986, THESIS LOUSIANA STAT
[3]   SAMPLE-SIZE EFFECTS ON CHI-SQUARE AND OTHER STATISTICS USED IN EVALUATING CAUSAL-MODELS [J].
BEARDEN, WO ;
SHARMA, S ;
TEEL, JE .
JOURNAL OF MARKETING RESEARCH, 1982, 19 (04) :425-430
[4]  
Bentler P., 2002, EQS structural equations program manual
[5]   PROBLEMS WITH EM ALGORITHMS FOR ML FACTOR-ANALYSIS [J].
BENTLER, PM ;
TANAKA, JS .
PSYCHOMETRIKA, 1983, 48 (02) :247-251
[6]  
BOLLEN K, 1995, PSYCHOMETRIKA, V61, P109
[7]  
Boomsma A., 1982, Systems under indirect observation: Causality, structure, prediction (Part 1), P149
[8]  
BOOMSMA A, 1996, KWANTITATIEVE METHOD, V52, P7
[9]  
BOOMSMA A, 1983, THESIS RIJKSUNIVERSI
[10]  
Box GE., 2011, BAYESIAN INFERENCE S