Optimal bounds for the Prokhorov distance of the Miller-Sen process and Brownian motion

被引:3
作者
Ferger, D [1 ]
机构
[1] Univ Giessen, Inst Math, D-35392 Giessen, Germany
关键词
nondegenerate U-processes; the Prokhorov-metric; Hoeffding-decomposition; partial sum process;
D O I
10.1137/S0040585X97976040
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider U-processes introduced by Miller and Sen. Exact rates of convergence to Brownian motion in the sense of Prokhorov's metric are established.
引用
收藏
页码:155 / 162
页数:8
相关论文
共 16 条
[1]  
[Anonymous], 1960, P AM MATH SOC, DOI DOI 10.1090/S0002-9939-1960-0112190-3
[2]  
Arak T. V., 1975, Theory of Probability and Its Applications, V20, P372, DOI 10.1137/1120040
[3]   LIMITING BEHAVIOR OF POSTERIOR DISTRIBUTIONS WHEN MODEL IS INCORRECT [J].
BERK, RH .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (01) :51-&
[4]  
Borovkov A.A., 1973, THEOR PROBAB APPL, V18, P207
[5]  
FERGER D, 1996, SANKHYA SER A, V58, P142
[6]   CONVERGENCE RATES FOR U-STATISTICS AND RELATED STATISTICS [J].
GRAMS, WF ;
SERFLING, RJ .
ANNALS OF STATISTICS, 1973, 1 (01) :153-160
[7]  
HAUSLER E, 1984, Z WAHRSCHEINLICHKEIT, V65, P523
[8]   A CLASS OF STATISTICS WITH ASYMPTOTICALLY NORMAL DISTRIBUTION [J].
HOEFFDING, W .
ANNALS OF MATHEMATICAL STATISTICS, 1948, 19 (03) :293-325
[9]  
HOEFFDING W, 1961, I STAT MIMEO SERIES, V302
[10]  
HORVATH L, 1985, P CAMBRIDGE PHILOS S, V98, P559