Dopant effect and characterization of polypyrrole-cellulose composites prepared by in situ polymerization process

被引:101
作者
Ding, Chunyue [1 ]
Qian, Xueren [1 ]
Yu, Gang [1 ]
An, Xianhui [1 ]
机构
[1] NE Forestry Univ, Minist Educ, Key Lab Biobased Mat Sci & Technol, Harbin 150040, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Sulfonic dopants; Polypyrrole-cellulose composites; Conductivity; VAPOR-PHASE POLYMERIZATION; CONDUCTIVE PAPER; PYRROLE; POLYANILINE;
D O I
10.1007/s10570-010-9442-6
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
Polypyrrole (PPy)-cellulose composites were prepared by in situ polymerization of pyrrole in pulp suspension using ferric chloride as an oxidant. Some sulfonic compounds including p-toluenesulfonic acid and its sodium salt (PTSA and PTSA-Na), benzenesulfonic acid (BSA), dodecylbenzene sulfonic acid and its sodium salt (DBSA and DBSA-Na), 2-naphthalene sulfonic acid (NSA) and 9,10-anthraquinone-2-sulfonic acid sodium salt (AQSA-Na) were used as dopants, and their effect on the conductivity of PPy-cellulose composite was investigated. The results showed that the species and dose of dopants had significant effect on the surface resistivity and environmental stability of PPy-cellulose composite. As the dopant, PTSA and DBSA had a superior doping effect compared to their sodium salts. The doping result of BSA was close to that of PTSA. NSA bearing a naphthalene ring and AQSA-Na bearing an anthraquinone ring gave the best conductivity. Using NSA or AQSA-Na as a dopant, along with suitable polymerization conditions, the PPy-cellulose composite obtained showed a surface resistivity as low as 20 Omega cm(-2). For most dopants, the lowest surface resistivity could be obtained when the molar ratio of dopant to pyrrole was 1:1. Both ATR-FTIR (attenuated total reflection-Fourier transform infrared spectroscopy) and XPS (X-ray photoelectron spectroscopy) analysis confirmed that the PPy on pulp fibers doped with PTSA, PTSA-Na, NSA and AQSA-Na had different doping levels. The higher doping level of the PPy in the composites doped with NAS and AQSA-Na might be related to the stronger interaction of cellulose with PPy chains. Both SEM (scanning electron microscopy) and AFM (atomic force microscopy) observation revealed the fine grain microstructure of the PPy on the composites with average grain sizes in the range of 100-200 nm, and the PPy on the samples doped with NSA and AQSA-Na exhibited quite different morphology as compared to those doped with PTSA and its sodium salt.
引用
收藏
页码:1067 / 1077
页数:11
相关论文
共 24 条
[1]  
Ansari R., 2006, E-J CHEM, V3, P186, DOI [DOI 10.1155/2006/860413, 10.1155/2006/860413]
[2]   Polyaniline and polypyrrole:: A comparative study of the preparation [J].
Blinova, Natalia V. ;
Stejskal, Jaroslav ;
Trchova, Miroslava ;
Prokes, Jan ;
Omastova, Maria .
EUROPEAN POLYMER JOURNAL, 2007, 43 (06) :2331-2341
[3]  
CHEN J, 2007, CHINA PULP PAPER, V26, P4, DOI DOI 10.3969/J.ISSN.0254-508X.2007.07.002
[4]   Greener method for high-quality polypyrrole [J].
Dias, H. V. Rasika ;
Fianchini, Mauro ;
Rajapakse, R. M. Gamini .
POLYMER, 2006, 47 (21) :7349-7354
[5]  
Ding CY, 2010, BIORESOURCES, V5, P303
[6]  
Esfandiari A., 2008, World Appl Sci J, V3, P470
[7]   RAMAN-SPECTRA OF POLYPYRROLE AND ITS 2,5-C-13-SUBSTITUTED AND C-DEUTERATED ANALOGS IN DOPED AND UNDOPED STATES [J].
FURUKAWA, Y ;
TAZAWA, S ;
FUJII, Y ;
HARADA, I .
SYNTHETIC METALS, 1988, 24 (04) :329-341
[8]   Characterization of conducting polymer coated synthetic fabrics for heat generation [J].
Hakansson, E ;
Kaynak, A ;
Lin, T ;
Nahavandi, S ;
Jones, T ;
Hu, E .
SYNTHETIC METALS, 2004, 144 (01) :21-28
[9]   The effects of dye dopants on the conductivity and optical absorption properties of polypyrrole [J].
Hakansson, Eva ;
Lin, Tong ;
Wang, Hongxia ;
Kaynak, Akif .
SYNTHETIC METALS, 2006, 156 (18-20) :1194-1202
[10]  
Huang B, 2006, PULP PAP-CANADA, V107, P38