Non-convergence of the L-curve regularization parameter selection method

被引:210
作者
Vogel, CR
机构
[1] Department of Mathematical Sciences, Montana State University, Bozeman
关键词
D O I
10.1088/0266-5611/12/4/013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The L-curve method was developed for the selection of regularization parameters in the solution of discrete systems obtained from ill-posed problems. An analysis of this method is given for selecting a parameter for Tikhonov regularization. This analysis, which is carried out in a semi-discrete, semi-stochastic setting, shows that the L-curve approach yields regularized solutions which fail to converge for a certain class of problems. A numerical example is also presented which indicates that this lack of convergence can arise in practical applications.
引用
收藏
页码:535 / 547
页数:13
相关论文
共 15 条
[1]   USING THE L-CURVE FOR DETERMINING OPTIMAL REGULARIZATION PARAMETERS [J].
ENGL, HW ;
GREVER, W .
NUMERISCHE MATHEMATIK, 1994, 69 (01) :25-31
[3]  
Groetsch C W., 1993, INVERSE PROBLEMS MAT, DOI [10.1007/978-3-322-99202-4, DOI 10.1007/978-3-322-99202-4]
[4]  
Groetsch C. W., 1984, THEORY TIKHONOV REGU
[5]  
GROETSCH CW, 1987, MATH COMPUT, V49, P499, DOI 10.1090/S0025-5718-1987-0906184-2
[6]  
Hanke M., 1993, Surveys on Mathematics for Industry, V3, P253
[7]  
HANKE M, 1995, LIMITATIONS L CURVE
[8]   ANALYSIS OF DISCRETE ILL-POSED PROBLEMS BY MEANS OF THE L-CURVE [J].
HANSEN, PC .
SIAM REVIEW, 1992, 34 (04) :561-580
[9]   THE USE OF THE L-CURVE IN THE REGULARIZATION OF DISCRETE III-POSED PROBLEMS [J].
HANSEN, PC ;
OLEARY, DP .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (06) :1487-1503
[10]  
Morozov V., 1968, USSR Comput Math Math Phys, V8, P63, DOI [10.1016/0041-5553(68)90034-7, DOI 10.1016/0041]