Parameter estimation for power-law distributions by maximum likelihood methods

被引:174
作者
Bauke, H. [1 ]
机构
[1] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England
关键词
02.50.Tt Inference methods; 89.75.-k Complex systems;
D O I
10.1140/epjb/e2007-00219-y
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Distributions following a power-law are an ubiquitous phenomenon. Methods for determining the exponent of a power-law tail by graphical means are often used in practice but are intrinsically unreliable. Maximum likelihood estimators for the exponent are a mathematically sound alternative to graphical methods.
引用
收藏
页码:167 / 173
页数:7
相关论文
共 10 条
[1]  
Bain L., 2000, INTRO PROBABILITY MA
[2]  
Brent R. P., 1973, ALGORITHMS MINIMIZAT
[3]  
Dress H, 2000, ANN STAT, V28, P254
[4]   Problems with fitting to the power-law distribution [J].
Goldstein, ML ;
Morris, SA ;
Yen, GG .
EUROPEAN PHYSICAL JOURNAL B, 2004, 41 (02) :255-258
[5]   SIMPLE GENERAL APPROACH TO INFERENCE ABOUT TAIL OF A DISTRIBUTION [J].
HILL, BM .
ANNALS OF STATISTICS, 1975, 3 (05) :1163-1174
[6]   Revisiting "scale-free" networks [J].
Keller, EF .
BIOESSAYS, 2005, 27 (10) :1060-1068
[7]   Power laws, Pareto distributions and Zipf's law [J].
Newman, MEJ .
CONTEMPORARY PHYSICS, 2005, 46 (05) :323-351
[8]  
Pawitan Y., 2001, All Likelihood: Statistical Modelling and Inference Using Likelihood
[9]  
Ramsey F.L., 2002, The Statistical Sleuth: A Course in Methods of Data Analysis, V2nd
[10]  
G N U SCI LIB