Accurate calculation of the heats of formation for large main group compounds with spin-component scaled MP2 methods

被引:241
作者
Grimme, S [1 ]
机构
[1] Univ Munster, Inst Organ Chem, D-48149 Munster, Germany
关键词
D O I
10.1021/jp050036j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Three MP2-type electron correlation treatments and standard density functional theory (DFT) approaches are used to predict the heats of formation for a wide variety of different molecules. The SCF and MP2 calculations are performed efficiently using the resolution-of-the- identity (RI) approximation such that large basis set (i.e., polarized valence quadruple- quality) treatments become routinely possible for systems with 50- 100 atoms. An atom equivalent scheme that corrects the calculated atomic energies is applied to extract the "real" accuracy of the methods for chemically relevant problems. It is found that the spin-component- scaled MP2 method (SCS-MP2, J. Chem. Phys, 2003, 118, 9095) performs best and provides chemical accuracy (MAD of 1. 18 kcal/mol) for a G2/97 test set of molecules. The computationally more economical SOS-MP2 variant, which retains only the opposite-spin part of the correlation energy, is slightly less accurate (MAD of 1.36 kcal/mol) than SCS-MP2. Both spin -cornponent-scaled MP2 treatments perform significantly better than standard MP2 (MAD of 1.77 kcal/mol) and DFT-B3LYP (MAD of 2.12 kcal/mol). These conclusions are supported by results obtained for a second test set of complex systems containing 70 molecules, including charged, strained, polyhalogenated, hypervalent, and large unsaturated species (e.g. C-60). For this set, DFT-B3LYP performs badly (MAD of 8.6 kcal/mol) with many errors > 10-20 kcal/mol while the spin-component-scaled MP2 methods are still very accurate (MAD of 2.8 and 3.7 kcal/mol, respectively). DFT-B3LYP shows an obvious tendency to underestimate molecular stability as the system size increases. Out of six density functionals tested, the hybrid functional PBEO performs best. All in all, the SCS-MP2 method, together with large AO basis sets, clearly outperforms current DFT approaches and seems to be the most accurate quantum chemical model that routinely can predict the thermodynamic properties of large main group compounds.
引用
收藏
页码:3067 / 3077
页数:11
相关论文
共 47 条
[1]   Toward reliable density functional methods without adjustable parameters: The PBE0 model [J].
Adamo, C ;
Barone, V .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (13) :6158-6170
[2]  
An XW, 1996, J CHEM THERMODYN, V28, P1115
[3]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[4]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[5]   W3 theory:: Robust computational thermochemistry in the kJ/mol accuracy range [J].
Boese, AD ;
Oren, M ;
Atasoylu, O ;
Martin, JML ;
Kállay, M ;
Gauss, J .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (09) :4129-4141
[6]   The circumambulation of a phosphirane: Taking 9-phenyl-9-phosphabicyclo[6.1.0]nona-2,4,6-triene for a "walk" [J].
Bulo, RE ;
Jansen, H ;
Ehlers, AW ;
de Kanter, FJJ ;
Schakel, M ;
Lutz, M ;
Spek, AL ;
Lammertsma, K .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (06) :714-717
[7]   A set of standard enthalpies of formation for benchmarking, calibration, and parametrization of electronic structure methods [J].
Cioslowski, J ;
Schimeczek, M ;
Liu, G ;
Stoyanov, V .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (21) :9377-9389
[8]  
Cioslowski J, 2001, QUANTUM MECH PREDICT
[9]  
Cremer D., 1998, ENCY COMPUTATIONAL C, P1706
[10]   Gaussian-3 (G3) theory for molecules containing first and second-row atoms [J].
Curtiss, LA ;
Raghavachari, K ;
Redfern, PC ;
Rassolov, V ;
Pople, JA .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (18) :7764-7776