Impaired tissue growth is mediated by checkpoint kinase 1 (CHK1) in the integrated stress response

被引:33
作者
Malzer, Elke [1 ,2 ]
Daly, Marie-Louise [1 ]
Moloney, Aileen [2 ]
Sendall, Timothy J. [2 ]
Thomas, Sally E. [1 ]
Ryder, Edward [2 ]
Ryoo, Hyung Don [3 ]
Crowther, Damian C. [1 ,2 ]
Lomas, David A. [1 ]
Marciniak, Stefan J. [1 ]
机构
[1] Univ Cambridge, CIMR, Dept Med, Cambridge CB2 0XY, England
[2] Univ Cambridge, Dept Genet, Cambridge CB2 3EH, England
[3] NYU Langone Med Ctr, Dept Cell Biol, New York, NY USA
基金
英国工程与自然科学研究理事会;
关键词
CHK1; Cell cycle; Endoplasmic reticulum stress; PERK; UNFOLDED-PROTEIN RESPONSE; ENDOPLASMIC-RETICULUM STRESS; INITIATION-FACTOR; DAMAGE-INDUCIBLE PROTEIN; DNA-DAMAGE; CELL-CYCLE; IN-VIVO; DROSOPHILA-MELANOGASTER; TRANSLATIONAL CONTROL; GENE-EXPRESSION;
D O I
10.1242/jcs.070078
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The integrated stress response (ISR) protects cells from numerous forms of stress and is involved in the growth of solid tumours; however, it is unclear how the ISR acts on cellular proliferation. We have developed a model of ISR signalling with which to study its effects on tissue growth. Overexpression of the ISR kinase PERK resulted in a striking atrophic eye phenotype in Drosophila melanogaster that could be rescued by co-expressing the eIF2 alpha phosphatase GADD34. A genetic screen of 3000 transposon insertions identified grapes, the gene that encodes the Drosophila orthologue of checkpoint kinase 1 (CHK1). Knockdown of grapes by RNAi rescued eye development despite ongoing PERK activation. In mammalian cells, CHK1 was activated by agents that induce ER stress, which resulted in a G2 cell cycle delay. PERK was both necessary and sufficient for CHK1 activation. These findings indicate that non-genotoxic misfolded protein stress accesses DNA-damage-induced cell cycle checkpoints to couple the ISR to cell cycle arrest.
引用
收藏
页码:2892 / 2900
页数:9
相关论文
共 79 条
[1]   The elF2α kinases PERK and PKR activate glycogen synthase kinase 3 to promote the proteasomal degradation of p53 [J].
Baltzis, Dionissios ;
Pluquet, Olivier ;
Papadakis, Andreas I. ;
Kazemi, Shirin ;
Qu, Li-Ke ;
Koromilas, Antonis E. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (43) :31675-31687
[2]   CHOP (GADD153) AND ITS ONCOGENIC VARIANT, TLS-CHOP, HAVE OPPOSING EFFECTS ON THE INDUCTION OF G(1)/S ARREST [J].
BARONE, MV ;
CROZAT, A ;
TABAEE, A ;
PHILIPSON, L ;
RON, D .
GENES & DEVELOPMENT, 1994, 8 (04) :453-464
[3]   Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response [J].
Bertolotti, A ;
Zhang, YH ;
Hendershot, LM ;
Harding, HP ;
Ron, D .
NATURE CELL BIOLOGY, 2000, 2 (06) :326-332
[4]   ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth [J].
Bi, MX ;
Naczki, C ;
Koritzinsky, M ;
Fels, D ;
Blais, J ;
Hu, NP ;
Harding, H ;
Novoa, I ;
Varia, M ;
Raleigh, J ;
Scheuner, D ;
Kaufman, RJ ;
Bell, J ;
Ron, D ;
Wouters, BG ;
Koumenis, C .
EMBO JOURNAL, 2005, 24 (19) :3470-3481
[5]   Mitogen-activated protein kinase stimulation of Ca2+ signaling is required for survival of endoplasmic reticulum stress in yeast [J].
Bonilla, M ;
Cunningham, KW .
MOLECULAR BIOLOGY OF THE CELL, 2003, 14 (10) :4296-4305
[6]   CDC25 phosphatases in cancer cells: key players? Good targets? [J].
Boutros, Rose ;
Lobjois, Valerie ;
Ducommun, Bernard .
NATURE REVIEWS CANCER, 2007, 7 (07) :495-507
[7]  
BRAND AH, 1993, DEVELOPMENT, V118, P401
[8]   PERK mediates cell-cycle exit during the mammalian unfolded protein response [J].
Brewer, JW ;
Diehl, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (23) :12625-12630
[9]   Mammalian unfolded protein response inhibits cyclin D1 translation and cell-cycle progression [J].
Brewer, JW ;
Hendershot, LM ;
Sherr, CJ ;
Diehl, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (15) :8505-8510
[10]   Growth arrest and DNA damage-inducible protein GADD34 targets protein phosphatase 1α to the endoplasmic reticulum and promotes dephosphorylation of the α subunit of eukaryotic translation initiation factor 2 [J].
Brush, MH ;
Weiser, DC ;
Shenolikar, S .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (04) :1292-1303