Fuzzy integrals for set-valued mappings

被引:11
作者
Cho, SJ
Lee, BS
Lee, GM
Kim, DS
机构
[1] Pukyong Natl Univ, Dept Appl Math, Pusan 608737, South Korea
[2] Kyungsung Univ, Dept Math, Pusan 608736, South Korea
关键词
analysis; measure theory; fuzzy integral; measurable selection; fuzzy measure; set-valued mapping; Fatou's lemma; Lebesgue convergence theorem;
D O I
10.1016/S0165-0114(98)00385-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we introduce the concept of fuzzy integrals for set-valued mappings, which is an extension of fuzzy integrals for single-valued functions defined by Sugeno. We give some properties including convergence theorems on fuzzy integrals for set-valued mappings. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:333 / 337
页数:5
相关论文
共 14 条
[1]  
[Anonymous], 1977, LECT NOTES MATH
[2]  
Aubin J. P., 1990, Set-valued analysis, DOI 10.1007/978-0-8176-4848-0
[3]   INTEGRALS OF SET-VALUED FUNCTIONS [J].
AUMANN, RJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1965, 12 (01) :1-&
[4]  
Dubois D.J., 1980, FUZZY SETS SYSTEMS T
[5]   INTEGRALS, CONDITIONAL EXPECTATIONS, AND MARTINGALES OF MULTIVALUED FUNCTIONS [J].
HIAI, F ;
UMEGAKI, H .
JOURNAL OF MULTIVARIATE ANALYSIS, 1977, 7 (01) :149-182
[6]   FUZZY DIFFERENTIAL-EQUATIONS [J].
KALEVA, O .
FUZZY SETS AND SYSTEMS, 1987, 24 (03) :301-317
[7]   ON THE THEORY OF BANACH-SPACE VALUED MULTIFUNCTIONS .1. INTEGRATION AND CONDITIONAL-EXPECTATION [J].
PAPAGEORGIOU, NS .
JOURNAL OF MULTIVARIATE ANALYSIS, 1985, 17 (02) :185-206
[8]   THE FUZZY INTEGRAL [J].
RALESCU, D ;
ADAMS, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1980, 75 (02) :562-570
[9]  
Sugeno M., 1974, THESIS TOKYO I TECH