Improving correlations between MODIS aerosol optical thickness and ground-based PM2.5 observations through 3D spatial analyses

被引:35
作者
Hutchison, Keith D. [1 ]
Faruqui, Shazia J. [1 ]
Smith, Solar [1 ]
机构
[1] Univ Texas Austin, Ctr Space Res, Austin, TX 78759 USA
基金
美国国家航空航天局;
关键词
MODIS; air quality; particulate matter; aerosol optical thickness;
D O I
10.1016/j.atmosenv.2007.09.050
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Center for Space Research (CSR) continues to focus on developing methods to improve correlations between satellite-based aerosol optical thickness (AOT) values and ground-based, air pollution observations made at continuous ambient monitoring sites (CAMS) operated by the Texas commission on environmental quality (TCEQ). Strong correlations and improved understanding of the relationships between satellite and ground observations are needed to formulate reliable real-time predictions of air quality using data accessed from the moderate resolution imaging spectroradiometer (MODIS) at the CSR direct-broadcast ground station. In this paper, improvements in these correlations are demonstrated first as a result of the evolution in the MODIS retrieval algorithms. Further improvement is then shown using procedures that compensate for differences in horizontal spatial scales between the nominal 10-km MODIS AOT Products and CAMS point measurements. Finally, airborne light detection and ranging (lidar) observations, collected during the Texas Air Quality Study of 2000, are used to examine aerosol profile concentrations, which may vary greatly between aerosol classes as a result of the sources, chemical composition, and meteorological conditions that govern transport processes. Further improvement in correlations is demonstrated with this limited dataset using insights into aerosol profile information inferred from the vertical motion vectors in a trajectory-based forecast model. Analyses are ongoing to verify these procedures on a variety of aerosol classes using data collected by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (Calipso) lidar. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:530 / 543
页数:14
相关论文
共 32 条
[1]  
ACKERMAN S, 2002, ATBDMOD06
[2]   Discriminating clear sky from clouds with MODIS [J].
Ackerman, SA ;
Strabala, KI ;
Menzel, WP ;
Frey, RA ;
Moeller, CC ;
Gumley, LE .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D24) :32141-32157
[3]   Improving national air quality forecasts with satellite aerosol observations [J].
Al-Saadi, J ;
Szykman, J ;
Pierce, RB ;
Kittaka, C ;
Neil, D ;
Chu, DA ;
Remer, L ;
Gumley, L ;
Prins, E ;
Weinstock, L ;
MacDonald, C ;
Wayland, R ;
Dimmick, F ;
Fishman, J .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2005, 86 (09) :1249-+
[4]  
[Anonymous], GEOPHYS RES LETT
[5]   Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1 [J].
Barnes, WL ;
Pagano, TS ;
Salomonson, VV .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (04) :1088-1100
[6]   Aerosol-cloud interaction-misclassification of MODIS clouds in heavy aerosol [J].
Brennan, JI ;
Kaufman, YJ ;
Koren, I ;
Li, RR .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (04) :911-915
[7]  
Carlson T. N., 1972, Journal of Applied Meteorology, V11, P283, DOI 10.1175/1520-0450(1972)011<0283:TLSMOS>2.0.CO
[8]  
2
[9]   Validation of MODIS aerosol optical depth retrieval over land -: art. no. 1617 [J].
Chu, DA ;
Kaufman, YJ ;
Ichoku, C ;
Remer, LA ;
Tanré, D ;
Holben, BN .
GEOPHYSICAL RESEARCH LETTERS, 2002, 29 (12) :MOD2-1
[10]   Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS) [J].
Chu, DA ;
Kaufman, YJ ;
Zibordi, G ;
Chern, JD ;
Mao, J ;
Li, CC ;
Holben, BN .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D21)