Latent Hierarchical Structural Learning for Object Detection

被引:103
作者
Zhu, Long [1 ]
Chen, Yuanhao [2 ]
Yuille, Alan [2 ]
Freeman, William [1 ]
机构
[1] MIT, CSAIL, Cambridge, MA 02139 USA
[2] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
来源
2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2010年
关键词
D O I
10.1109/CVPR.2010.5540096
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a latent hierarchical structural learning method for object detection. An object is represented by a mixture of hierarchical tree models where the nodes represent object parts. The nodes can move spatially to allow both local and global shape deformations. The models can be trained discriminatively using latent structural SVM learning, where the latent variables are the node positions and the mixture component. But current learning methods are slow, due to the large number of parameters and latent variables, and have been restricted to hierarchies with two layers. In this paper we describe an incremental concave-convex procedure (iCCCP) which allows us to learn both two and three layer models efficiently. We show that iCCCP leads to a simple training algorithm which avoids complex multi-stage layer-wise training, careful part selection, and achieves good performance without requiring elaborate initialization. We perform object detection using our learnt models and obtain performance comparable with state-of-the-art methods when evaluated on challenging public PASCAL datasets. We demonstrate the advantages of three layer hierarchies - outperforming Felzenszwalb et al.'s two layer models on all 20 classes.
引用
收藏
页码:1062 / 1069
页数:8
相关论文
共 18 条
[1]  
ALTUN Y, 2003, P INT C MACH LEARN
[2]  
[Anonymous], 2007, PASCAL Visual Object Classes Challenge
[3]  
[Anonymous], 2001, Journal of Machine Learning Research
[4]  
[Anonymous], 2009, ICML
[5]  
[Anonymous], P INT C COMP VIS
[6]  
[Anonymous], 2009, PAMI
[7]  
Bai X., 2009, ICCV
[8]  
Blaschko M.B., 2008, ECCV
[9]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893
[10]  
Platt John C., 1998, ADV NEURAL INFORM PR, P557