Estimation of ellipse parameters using optimal minimum variance estimator

被引:19
作者
Cui, YT [1 ]
Weng, J [1 ]
Reynolds, H [1 ]
机构
[1] ERGONOM RES LAB,LANSING,MI 48912
关键词
ellipse; minimum variance estimator; parameter estimation; curve fitting;
D O I
10.1016/0167-8655(95)00114-X
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an unbiased minimum variance estimator to estimate the parameters of an ellipse. A space decomposition scheme is presented to direct the search of the optimal parameters. Experimental results have shown the dramatic improvement over existing weighted least sum of squares approaches, especially when the ellipse is occluded.
引用
收藏
页码:309 / 316
页数:8
相关论文
共 13 条
[1]  
Albano A., 1974, COMP GRAPH INFO PROC, V3, P23, DOI [10.1016/0146-664X(74)90008-2, DOI 10.1016/0146-664X(74)90008-2CGIPBG0146-664X]
[2]   GENERALIZING THE HOUGH TRANSFORM TO DETECT ARBITRARY SHAPES [J].
BALLARD, DH .
PATTERN RECOGNITION, 1981, 13 (02) :111-122
[3]   FITTING CONIC SECTIONS TO SCATTERED DATA [J].
BOOKSTEIN, FL .
COMPUTER GRAPHICS AND IMAGE PROCESSING, 1979, 9 (01) :56-71
[4]  
COOPER DB, 1976, IEEE T COMPUT, V25, P1020
[5]   FINDING ELLIPSES USING THE GENERALIZED HOUGH TRANSFORM [J].
DAVIES, ER .
PATTERN RECOGNITION LETTERS, 1989, 9 (02) :87-96
[6]   ELLIPSE DETECTION AND MATCHING WITH UNCERTAINTY [J].
ELLIS, T ;
ABBOOD, A ;
BRILLAULT, B .
IMAGE AND VISION COMPUTING, 1992, 10 (05) :271-276
[7]  
LUENBERGER D. G., 1969, Optimization by Vector Space Methods
[8]   NOTE ON POLYGONAL AND ELLIPTICAL APPROXIMATION OF MECHANICAL PARTS [J].
NAKAGAWA, Y ;
ROSENFELD, A .
PATTERN RECOGNITION, 1979, 11 (02) :133-142
[9]   FITTING ELLIPSES AND PREDICTING CONFIDENCE ENVELOPES USING A BIAS CORRECTED KALMAN FILTER [J].
PORRILL, J .
IMAGE AND VISION COMPUTING, 1990, 8 (01) :37-41
[10]   A NOTE ON THE LEAST-SQUARES FITTING OF ELLIPSES [J].
ROSIN, PL .
PATTERN RECOGNITION LETTERS, 1993, 14 (10) :799-808