Characterization of molecularly imprinted polymers with the Langmuir-Freundlich isotherm

被引:458
作者
Umpleby, RJ [1 ]
Baxter, SC
Chen, YZ
Shah, RN
Shimizu, KD
机构
[1] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA
[2] Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA
关键词
D O I
10.1021/ac0105686
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The majority of binding models that have been applied to molecularly imprinted polymers (MIPs) have been homogeneous models. MIPs' on the other hand, are heterogeneous materials containing binding sites with a wide array of binding affinities and selectivities. Demonstrated is that the binding behavior of MIPs can be accurately modeled by the heterogeneous Langmuir-Freundlich (LF) isotherm. The applicability of the LF isotherm to MIPs was demonstrated using five representative MIPs from the literature, including both homogeneous and heterogeneous MIPS. Previously, such comparisons required the use of several different binding models and analyses, including the Langmuir model, the Freundlich model, and numerical approximation techniques. In contrast, the IF model enabled direct comparisons of the binding characteristics of MIPs that have very different underlying distributions and were measured under different conditions. The binding parameters can be calculated directly using the LF fitting coefficients that yield a measure of the total number of binding sites, mean binding affinity, and heterogeneity. Alternatively, solution of the Langmuir adsorption integral for the LF model enabled direct calculation of the corresponding affinity spectrum from the IN fitting coefficients from a simple algebraic expression, yielding a measure of the number of binding sites with respect to association constant. Finally, the ability of the LF isotherm to model MIPs suggests that a unimodal heterogeneous distribution is an accurate approximation of the distribution found in homogeneous and heterogeneous MIPs.
引用
收藏
页码:4584 / 4591
页数:8
相关论文
共 46 条
  • [1] ALDURI B, 1995, REV CHEM ENG, V11, P101
  • [2] Allender CJ, 1997, CHIRALITY, V9, P233, DOI 10.1002/(SICI)1520-636X(1997)9:3<233::AID-CHIR5>3.0.CO
  • [3] 2-G
  • [4] MIMICS OF THE BINDING-SITES OF OPIOID RECEPTORS OBTAINED BY MOLECULAR IMPRINTING OF ENKEPHALIN AND MORPHINE
    ANDERSSON, LI
    MULLER, R
    VLATAKIS, G
    MOSBACH, K
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (11) : 4788 - 4792
  • [5] [Anonymous], 2001, MOL IMPRINTED POLYM
  • [6] SURFACE-ACIDITY BASICITY OF ROAD STONE AGGREGATES BY ADSORPTION FROM NONAQUEOUS SOLUTIONS
    ARDEBRANT, H
    PUGH, RJ
    [J]. COLLOIDS AND SURFACES, 1991, 53 (1-2): : 101 - 116
  • [7] BARTSCH RA, 1998, MOL IONIC RECOGNITIO
  • [8] BERZOFSKY JA, 1993, FUNDAMENTAL IMMUNOLO, P427
  • [9] Connors K. A, 1987, BINDING CONSTANTS ME
  • [10] Hage DS, 1999, CLIN CHEM, V45, P593