A serpentinite-hosted ecosystem:: The lost city hydrothermal field

被引:882
作者
Kelley, DS [1 ]
Karson, JA
Früh-Green, GL
Yoerger, DR
Shank, TM
Butterfield, DA
Hayes, JM
Schrenk, MO
Olson, EJ
Proskurowski, G
Jakuba, M
Bradley, A
Larson, B
Ludwig, K
Glickson, D
Buckman, K
Bradley, AS
Brazelton, WJ
Roe, K
Elend, MJ
Delacour, A
Bernasconi, SM
Lilley, MD
Baross, JA
Summons, RT
Sylva, SP
机构
[1] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA
[2] Duke Univ, Div Earth & Ocean Sci, Durham, NC 27708 USA
[3] ETH Zentrum, Dept Earth Sci, Zurich, Switzerland
[4] Univ Washington, Joint Inst Study Atmosphere & Oceans, Seattle, WA 98115 USA
[5] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA
[6] Woods Hole Oceanog Inst, MIT WHOI Joint Program, Woods Hole, MA 02543 USA
[7] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA
关键词
D O I
10.1126/science.1102556
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The serpentinite-hosted Lost City hydrothermal field is a remarkable submarine ecosystem in which geological, chemical, and biological processes are intimately interlinked. Reactions between seawater and upper mantle peridotite produce methane- and hydrogen-rich fluids, with temperatures ranging from <40 degrees to 90 degrees C at pH 9 to 11, and carbonate chimneys 30 to 60 meters tall. A low diversity of microorganisms related to methane-cycling Archaea thrive in the warm porous interiors of the edifices. Macrofaunal communities show a degree of species diversity at least as high as that of black smoker vent sites along the Mid-Atlantic Ridge, but they lack the high biomasses of chemosynthetic organisms that are typical of volcanically driven systems.
引用
收藏
页码:1428 / 1434
页数:7
相关论文
共 48 条
[1]   METHANE HYDROGEN GAS SEEPS, ZAMBALES OPHIOLITE, PHILIPPINES - DEEP OR SHALLOW ORIGIN [J].
ABRAJANO, TA ;
STURCHIO, NC ;
BOHLKE, JK ;
LYON, GL ;
POREDA, RJ ;
STEVENS, CM .
CHEMICAL GEOLOGY, 1988, 71 (1-3) :211-222
[2]   Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10°-16°E -: art. no. 1044 [J].
Bach, W ;
Banerjee, NR ;
Dick, HJB ;
Baker, ET .
GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2002, 3
[3]  
Berndt ME, 1996, GEOLOGY, V24, P351, DOI 10.1130/0091-7613(1996)024<0351:ROCDSO>2.3.CO
[4]  
2
[5]   Geology of the Atlantis Massif (Mid-Atlantic Ridge, 30° N):: Implications for the evolution of an ultramafic oceanic core complex [J].
Blackman, DK ;
Karson, JA ;
Kelley, DS ;
Cann, JR ;
Früh-Green, GL ;
Gee, JS ;
Hurst, SD ;
John, BE ;
Morgan, J ;
Nooner, SL ;
Ross, DK ;
Schroeder, TJ ;
Williams, EA .
MARINE GEOPHYSICAL RESEARCH, 2002, 23 (5-6) :443-469
[6]   MANTLE PERIDOTITES FROM CONTINENTAL RIFTS TO OCEAN BASINS TO SUBDUCTION ZONES [J].
BONATTI, E ;
MICHAEL, PJ .
EARTH AND PLANETARY SCIENCE LETTERS, 1989, 91 (3-4) :297-311
[7]   Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR) [J].
Charlou, JL ;
Donval, JP ;
Fouquet, Y ;
Jean-Baptiste, P ;
Holm, N .
CHEMICAL GEOLOGY, 2002, 191 (04) :345-359
[8]   An ultraslow-spreading class of ocean ridge [J].
Dick, HJB ;
Lin, J ;
Schouten, H .
NATURE, 2003, 426 (6965) :405-412
[9]   Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic [J].
Edmonds, HN ;
Michael, PJ ;
Baker, ET ;
Connelly, DP ;
Snow, JE ;
Langmuir, CH ;
Dick, HJB ;
Mühe, R ;
German, CR ;
Graham, DW .
NATURE, 2003, 421 (6920) :252-256
[10]  
Fritz R, 1992, P 7 INT S WAT ROCK I, V1, P793